Data Warehousing

CPS 216

Advanced Database Systems

Review

Data warehousing: integrating data for OLAP
* OLAP versus OLTP
» Warehousing versus mediation
* Warehouse maintenance
— Warehouse data as materialized views
— Recomputation versus incremental maintenance
— Self-maintenance

Today

« Star, snowflake, and cube

* ROLAP and MOLAP algorithms

Star schema

imension table

Dimension table Store [SID] _city
Product [PID] name [cost s1| Durham

pl beer 10 s2 | Chapel Hill

p2 | diaper 16 s3 RTP

Sale [0ID] date |cID|PID]SID] qty [price | Fact table
100[11/23/2001[c3 [p1[s1| TNIR |- Big
10212/12/2001] c3| p2 [s1] 2 [N« Constantly growing
105]12/24/2001] ¢5 [p1 s3] 5 | 13 N\ §ores measures
sl LT T | (ofen aggregated in

/ queries)
Customer [CID[name | address city _|Dimension table

c3[Amy |100 Main St. | Durham |« Small

c4| Ben |102Main St | Durham |« Updated infrequently
c5| Carl |§OO Eighth St| Durham

4

Dimension hierarchies

Brand
Product<
Product type —Product category
brandID name
bl Huggies
b2 Budwiser
PID | brandID | typelD |
pi]| bl t \
p2 b2 2 typelD | name | catiD [~ catlD name
p3 bl 4 t diaper [cat7 cat7 babies
2 beer cat9 cat9 | beverages
13 juice cat9
4 pacifier | cat7

+ star schema = snowflake schema

Star join indexes

* Queries frequently join fact table with dimension tables
» Materialize the join result to speed up queries

* For each combination of dimension attribute values,
store the list of tuple ID’s in the fact table

— Brand name, store city, customer city — sales records;
Product type, store city — sales records; etc.

— Conceptually, multi-attribute indexes on the join result
* One index to support each combination of selection
conditions on attributes?

— Too many indexes!

Bitmap join indexes

» O’Neil & Quass, SIGMOD 1997
* Bitmap and projection indexes for each
dimension attribute

— Value of the dimension attribute <> tuple ID’s in the
fact table

» To process an arbitrary combination of selection
conditions, use bitmap indexes
— Bitmaps can be combined efficiently

* To retrieve attribute values for output, use
projection indexes

Data cube

Simplified schema: Sale(CID, PID, SID, qty)

Product
(c5,pl,83)=5
(c3,p2,s1)=2
. . i Store
P2t e SV
L VAR YCEM RO NN
o S. '."
1k
P s
- Customer
ALL c3 4 5

8

Completing the cube (slide 1)

Total quantity of sales for each product in each store
SELECT SUM(qty) FROM Sale

Product
e GrOUP BY PID, SID;
(ALL% 3)=5 (c5,pl,83)=5
(ALLg sh=2 S =2
=T Store
2} ALL 181) = ’
2 ﬁ)= oA pLSN=l 6 (c5 pl,s1)=3
g s
plf" i . .
sl Project all points onto Product-Store plane
Customer
ALL c3 c4 c5

9

Completing the cube (slide 2)

Total quantity of sales for each product
SELECT SUM(qty) FROM Sale GROUP BY PID;

Completing the cube (slide 3)

Total quantity of sales
SELECT SUM(qty) FROM Sale;

Product
(ALL, pl, s3) =5 (¢5,p1,83)=5
(ALL, p2,s1) =2 @.p2sh=2

(ALL, p2, ALL) Store

=2 p =4

olipls=1 & (s pl,si)=3
(ALL, p1, ALL) P
=0 s] Further project points onto the origin
Customer

ALL c3 c4 c5
(ALL, ALL, ALL)=11 11

Product
(ALL, pl, s3)=5 (c5,pl,83)=5
(ALL,p2,s1)=2 . p2s)=2
(ALL, p2, ALL) Store
=2 A)=4
P) ol pls=1 o5 pl,sl)=3
(ALL, p1, ALL) P
=0 s] Further project points onto Product axis
Customer
ALL c3 c4 c5 0
CUBE operator

» Gray et al., ICDE 1996
 Sale(CID, PID, SID, qty)
* Proposed SQL extension:
SELECT SUM(qty) FROM Sale
GROUP BY CUBE CID, PID, SID;
* Output contains:

— Normal groups produced by GROUP BY
¢ (cl, pl, s1, sum), (cl, p2, s3, sum), etc.

M

— Groups with one or more ALL’s
* (ALL, p1, s1, sum), (c2, ALL, ALL, sum), (ALL, ALL, ALL, sum), etc.

* Can you write a CUBE query using only GROUP BY]'s?

ROLLUP operator

* Sometimes CUBE is too much
— (..., state, city, street, ..., age, DOB, ...)
— CUBE state, city, street returns meaningless groups
* (ALL, ALL, "Main Street’): sales on any Main Street?
— CUBE age, DOB returns useless groups
* (ALL, DOB): DOB functionally determines age!
* Proposed SQL extension:
GROUP BY ROLLUP state, city, street;
* Output contains groups with ALL’s only as suffix
— (’NC’, ’Durham’, ’Main Street’), CNC’, ’Durham’, ALL),
(NC’, ALL, ALL), (ALL, ALL, ALL)
— But not (ALL, ALL, "Main Street’) or (ALL, "Durham’, ALL)

13

Computing GROUP BY

* ROLAP (Relational OLAP)
— Use standard relational engine
— Sorting and clustering
— Using indexes
— Automatic summary tables
* MOLAP (Multidimensional OLAP)

— Use a sparse multidimensional array

Sorting and clustering

* Sort (or cluster, e.g., using hashing) tuples
according to GROUP BY attributes
— Tuples in the same group are processed together
— Only one intermediate aggregate result needs to be
kept—Ilow memory requirement
¢ What if GROUP BY attributes # sort attributes?

— Still fine if GROUP BY attributes form a prefix of the
sort order

— Otherwise, need to keep intermediate aggregate
results around

More on sort order

* Sort by the order in which GROUP BY attributes
appear?
— Not necessary; e.g., GROUP BY PID, SID can be
processed just as efficiently by sorting on SID, PID
* Sort by the order in which GROUP BY ROLLUP
attributes appear?
— Useful; e.g., GROUP BY ROLLUP state, city, street

can be processed efficiently by sorting on state, city,
street, but not by sorting on street, city, state

Using bitmap join indexes

» O’Neil & Quass, SIGMOD 1997
* Use the bitmap join indexes on GB,, GB,, ..., GB,
* For each value v, of GB, in order:
For each value v, of GB, in order: ...
For each value v, of GB, in order:
Intersect bitmaps to locate tuples;
Retrieve their measures;
Calculate aggregate for group (Vy, V,, ..., V});
* Helps if data is sorted by GB,, GB,, ..., GBy

— So measures in the same group are clustered

Automatic summary tables

» Computing GROUP BY aggregates is expensive
* OLAP queries perform GROUP BY all the time

* Idea: precompute and store the aggregates!
» Automatic summary tables
— Maintained automatically as base data changes
— Just another index/materialized view

Aggregation view lattice

GROUP BY
CID, PID, SID
GROUP BY GROUP BY GROUP BY
CID, PID CID, SID PID, SID
GROUP BY GROUP BY GROUP BY
CID PID SID
GROUP BY O A child can be

computed from any parent

19

Selecting views to materialize

* Factors in deciding what to materialize
— What is its storage cost?
— What is its update cost?
— Which queries can benefit from it?
— How much can a query benefit from it?
* Example
— GROUP BY O is small, but not useful to most queries
— GROUP BY CID, PID, SID is useful to any query, but too
large to be beneficial
» Harinarayan et al., SIGMOD 1996; Gupta & Mumick,
ICDE 1999

20

Interlude: TPC-D, -H, and -R

e TPC-D: standard OLAP benchmark until 1999

— With aggressive use of precomputation techniques
(materialized views, automatic summary tables),
vendors were able to “cheat” and achieve amazing
performance

* Now, TPC-D has been replaced by
— TPC-H: ad hoc OLAP queries
« Cannot use materialized views
— TPC-R: business-reporting OLAP queries

« Can use materialized views

» http://www.tpc.org/

21

From tables to arrays

» Zhao et al., SIGMOD 1997

¢ “Chunk” an n-dimensional cube into n-
dimensional subcubes
— For a dense chunk (>40% full), store it as is

— For a sparse chunk (<40% full), compress it using
<coordinate, value> pairs

* To convert a table into chunks

— Pass 1: Partition table into memory-size partitions,
each of which contains a number of chunks

— Pass 2: Read partitions back in one at a time, and
chunk each partition in memory -

Dimension order

61 62 63 64
45 46 47 48
29 30 31 32
fis)
60(£
13| 14| 15| 16 g
[a)
9 10 11 12 s
52| Dimension order:
5 6 7 8 3 A,B,C
2 o _
& = Sort order:
| 2| 3| 4 S C,B,A
Q\
Dimension A =

Basic array cubing

GROUP BY B, C
Memory required: 31 %) 53 4 /]
1 chunk 45/ 46 / 47/ 48 d
(could be more) 29 30 31/ 32 ©
m ® L/
\ 15 L/ ®
[) 'z
1] 2) 1 5 o
N g /]
Lol ol 12 = ®| 1
[N o°
—H—H 9 o/
A .\0'(\ /
Ao s
T) i Q’\é\

Dimension A 2

Minimal spanning tree

GROUP BY
Recall the aggregation A,B,Cqqp
lattice
MST of the lattice: CRO U CROUPBYS GROUEEY

A. B AC 10 B,Cs

parent is always
Ch.OSCn.tO. be the .One GROUP BY GROUPBY GROUP BY
with minimum size Asy B 1o Cs
Compute each node

from its parent in the GROUP BY [0 |
MST
25
Memory requirement
* Dimension order is D,, D,, ..., D,

.

Aggregate to compute projects out D, (i.e.,
GROUPBY D,, ...,D, ,Dy.y, ..., D)

The memory required is roughly

Dy [-Dy |- ... [Dy_y | chunks

— Where | D; | denotes the number of chunks along D;
It is harder to aggregate away dimensions that
come later in the dimension order

27

* Multiway array cubing algorithm (MOLAP) beats

» An alternative ROLAP techinque

ROLAP versus MOLAP

sorting-based ROLAP algorithms

— Compressed array representation is more compact
than table representation

— Sorting-based ROLAP spends too much time on
comparing and copying
— In MOLAP, order is implied by the array positions

— Convert table to array
— Do MOLAP processing
— Dump the result cube to a table B

Multiway array cubing

* Goal: compute all 517 627 637 64
aggregates at the 45 /7 46 L 47/ 48
same time in a single 2 30/ 31/ 37
pass over the array,
using minimum |
amount of memory

+ GROUPBYB,C I
requires 1 chunk

1 11
TO TT

« GROUPBYA,C ||

Dimension B

requires 4 chunks o

* GROUPBYA,B L o 3
requires 16 chunks Q’\‘°
Dimension A

Minimum-memory spanning tree

* MMST of the aggregation lattice
— Parent is always chosen to be the one that makes the
child require the minimum memory to compute
— Note that results are produced in dimension order too,
so computation of the entire MMST can be pipelined
* Choose an optimal dimension order to minimize
the total amount of memory required by MMST

— It turns out that this optimal order is D, D,, ..., D,,
where | D, |[<|D,|<...<| D,

Next time

Data mining

