
1

Data Warehousing

CPS 216
Advanced Database Systems

2

Review
Data warehousing: integrating data for OLAP
• OLAP versus OLTP
• Warehousing versus mediation
• Warehouse maintenance

– Warehouse data as materialized views
– Recomputation versus incremental maintenance
– Self-maintenance

3

Today

• Star, snowflake, and cube

• ROLAP and MOLAP algorithms

4

Star schema

OID date CID PID SID qty price
100 11/23/2001 c3 p1 s1 1 12
102 12/12/2001 c3 p2 s1 2 17
105 12/24/2001 c5 p1 s3 5 13
… … … … … … …

Sale

Product PID name cost
p1 beer 10
p2 diaper 16
… … …

Store SID city
s1 Durham
s2 Chapel Hill
s3 RTP
… …

CID name address city
c3 Amy 100 Main St. Durham
c4 Ben 102 Main St. Durham
c5 Carl 800 Eighth St. Durham
… … … …

Customer

Fact table
• Big
• Constantly growing
• Stores measures

(often aggregated in
queries)

Dimension table
• Small
• Updated infrequently

Dimension table
Dimension table

5

Dimension hierarchies

PID brandID typeID
p1 b1 t1
p2 b2 t2
p3 b1 t4
… … …

brandID name
b1 Huggies
b2 Budwiser
… …

typeID name catID
t1 diaper cat7
t2 beer cat9
t3 juice cat9
t4 pacifier cat7
… … …

catID name
cat7 babies
cat9 beverages
… …

Product
Brand

Product type Product category

+ star schema = snowflake schema
6

Star join indexes
• Queries frequently join fact table with dimension tables

» Materialize the join result to speed up queries
• For each combination of dimension attribute values,

store the list of tuple ID’s in the fact table
– Brand name, store city, customer city → sales records;

Product type, store city → sales records; etc.
– Conceptually, multi-attribute indexes on the join result

• One index to support each combination of selection
conditions on attributes?
– Too many indexes!

2

7

Bitmap join indexes
» O’Neil & Quass, SIGMOD 1997
• Bitmap and projection indexes for each

dimension attribute
– Value of the dimension attribute ↔ tuple ID’s in the

fact table
• To process an arbitrary combination of selection

conditions, use bitmap indexes
– Bitmaps can be combined efficiently

• To retrieve attribute values for output, use
projection indexes

8

Data cube

Customer

Store

Product

ALL

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

Simplified schema: Sale(CID, PID, SID, qty)

(c5, p1, s1) = 3(c3, p1, s1) = 1

9

(ALL, p1, s3) = 5
(ALL, p2, s1) = 2

(ALL, p1, s1) = 4

Completing the cube (slide 1)
Total quantity of sales for each product in each store

Customer

Store

Product

ALL

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

(c5, p1, s1) = 3(c3, p1, s1) = 1

SELECT SUM(qty) FROM Sale
GROUP BY PID, SID;

Project all points onto Product-Store plane

10

(ALL, p2, ALL)
= 2

(ALL, p1, ALL)
= 9

(ALL, p1, s3) = 5
(ALL, p2, s1) = 2

(ALL, p1, s1) = 4

Completing the cube (slide 2)
Total quantity of sales for each product

Customer

Store

Product

ALL

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

(c5, p1, s1) = 3(c3, p1, s1) = 1

SELECT SUM(qty) FROM Sale GROUP BY PID;

Further project points onto Product axis

11

Completing the cube (slide 3)

(ALL, p2, ALL)
= 2

(ALL, p1, ALL)
= 9

(ALL, p1, s3) = 5
(ALL, p2, s1) = 2

(ALL, p1, s1) = 4

Total quantity of sales

Customer

Store

Product

ALL

p1

p2

s1

s2

s3

c3 c4 c5

(c3, p2, s1) = 2

(c5, p1, s3) = 5

(c5, p1, s1) = 3(c3, p1, s1) = 1

SELECT SUM(qty) FROM Sale;

Further project points onto the origin

(ALL, ALL, ALL) = 11 12

CUBE operator
» Gray et al., ICDE 1996
• Sale(CID, PID, SID, qty)
• Proposed SQL extension:

SELECT SUM(qty) FROM Sale
GROUP BY CUBE CID, PID, SID;

• Output contains:
– Normal groups produced by GROUP BY

• (c1, p1, s1, sum), (c1, p2, s3, sum), etc.

– Groups with one or more ALL’s
• (ALL, p1, s1, sum), (c2, ALL, ALL, sum), (ALL, ALL, ALL, sum), etc.

• Can you write a CUBE query using only GROUP BY’s?

3

13

ROLLUP operator
• Sometimes CUBE is too much

– (…, state, city, street, …, age, DOB, …)
– CUBE state, city, street returns meaningless groups

• (ALL, ALL, ’Main Street’): sales on any Main Street?
– CUBE age, DOB returns useless groups

• (ALL, DOB): DOB functionally determines age!

• Proposed SQL extension:
GROUP BY ROLLUP state, city, street;

• Output contains groups with ALL’s only as suffix
– (’NC’, ’Durham’, ’Main Street’), (’NC’, ’Durham’, ALL),

(’NC’, ALL, ALL), (ALL, ALL, ALL)
– But not (ALL, ALL, ’Main Street’) or (ALL, ’Durham’, ALL)

14

Computing GROUP BY
• ROLAP (Relational OLAP)

– Use standard relational engine
– Sorting and clustering
– Using indexes
– Automatic summary tables

• MOLAP (Multidimensional OLAP)
– Use a sparse multidimensional array

15

Sorting and clustering
• Sort (or cluster, e.g., using hashing) tuples

according to GROUP BY attributes
– Tuples in the same group are processed together
– Only one intermediate aggregate result needs to be

kept—low memory requirement
• What if GROUP BY attributes ≠ sort attributes?

– Still fine if GROUP BY attributes form a prefix of the
sort order

– Otherwise, need to keep intermediate aggregate
results around

16

More on sort order
• Sort by the order in which GROUP BY attributes

appear?
– Not necessary; e.g., GROUP BY PID, SID can be

processed just as efficiently by sorting on SID, PID
• Sort by the order in which GROUP BY ROLLUP

attributes appear?
– Useful; e.g., GROUP BY ROLLUP state, city, street

can be processed efficiently by sorting on state, city,
street, but not by sorting on street, city, state

17

Using bitmap join indexes
» O’Neil & Quass, SIGMOD 1997
• Use the bitmap join indexes on GB1, GB2, …, GBk

• For each value v1 of GB1 in order:
For each value v2 of GB2 in order: …

For each value vk of GBk in order:
Intersect bitmaps to locate tuples;
Retrieve their measures;
Calculate aggregate for group (v1, v2, …, vk);

• Helps if data is sorted by GB1, GB2, …, GBk
– So measures in the same group are clustered

18

Automatic summary tables
• Computing GROUP BY aggregates is expensive
• OLAP queries perform GROUP BY all the time

• Idea: precompute and store the aggregates!
» Automatic summary tables

– Maintained automatically as base data changes
– Just another index/materialized view

4

19

Aggregation view lattice

GROUP BY ∅

GROUP BY
CID, PID, SID

GROUP BY
CID

GROUP BY
PID

GROUP BY
SID

GROUP BY
CID, PID

GROUP BY
CID, SID

GROUP BY
PID, SID

A child can be
computed from any parent

20

Selecting views to materialize
• Factors in deciding what to materialize

– What is its storage cost?
– What is its update cost?
– Which queries can benefit from it?
– How much can a query benefit from it?

• Example
– GROUP BY ∅ is small, but not useful to most queries
– GROUP BY CID, PID, SID is useful to any query, but too

large to be beneficial
» Harinarayan et al., SIGMOD 1996; Gupta & Mumick,

ICDE 1999

21

Interlude: TPC-D, -H, and -R
• TPC-D: standard OLAP benchmark until 1999

– With aggressive use of precomputation techniques
(materialized views, automatic summary tables),
vendors were able to “cheat” and achieve amazing
performance

• Now, TPC-D has been replaced by
– TPC-H: ad hoc OLAP queries

• Cannot use materialized views
– TPC-R: business-reporting OLAP queries

• Can use materialized views

» http://www.tpc.org/
22

From tables to arrays
» Zhao et al., SIGMOD 1997
• “Chunk” an n-dimensional cube into n-

dimensional subcubes
– For a dense chunk (>40% full), store it as is
– For a sparse chunk (<40% full), compress it using

<coordinate, value> pairs
• To convert a table into chunks

– Pass 1: Partition table into memory-size partitions,
each of which contains a number of chunks

– Pass 2: Read partitions back in one at a time, and
chunk each partition in memory

23

Dimension order

Dimension A Dim
ens

ion
 C

D
im

en
si

on
 B

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

29 30 31 32
45 46 47 48

61 62 63 64

28

24

20

44

40

36

60

56

52 Dimension order:
A, B, C

= Sort order:
C, B, A

24

☻

☻

☻

☻

☻

☻

☻

☻

☻

☻

☻

☻

☻

☻

Basic array cubing

Dimension A Dim
ens

ion
 C

D
im

en
si

on
 B

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

29 30 31 32
45 46 47 48

61 62 63 64

28

24

20

44

40

36

60

56

52

GROUP BY B, C

☻

☻

Memory required:
1 chunk

(could be more)

5

25

Minimal spanning tree
• Recall the aggregation

lattice
• MST of the lattice:

parent is always
chosen to be the one
with minimum size

• Compute each node
from its parent in the
MST

GROUP BY ∅

GROUP BY
A, B, C

GROUP BY
A

GROUP BY
B

GROUP BY
C

GROUP BY
A, B

GROUP BY
A, C

GROUP BY
B, C

100

20 10 50

2 10 5

1

26

Multiway array cubing
• Goal: compute all

aggregates at the
same time in a single
pass over the array,
using minimum
amount of memory

• GROUP BY B, C
requires 1 chunk

• GROUP BY A, C
requires 4 chunks

• GROUP BY A, B
requires 16 chunks

Dimension A Dim
ens

ion
 C

D
im

en
si

on
 B

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

29 30 31 32
45 46 47 48

61 62 63 64

28

24

20

44

40

36

60

56

52

27

Memory requirement
• Dimension order is D1, D2, …, Dn

• Aggregate to compute projects out Dp (i.e.,
GROUP BY D1, …, Dp – 1, Dp + 1, …, Dn)

• The memory required is roughly
| D1 | · | D1 | · … · | Dp – 1 | chunks
– Where | Di | denotes the number of chunks along Di

» It is harder to aggregate away dimensions that
come later in the dimension order

28

Minimum-memory spanning tree
• MMST of the aggregation lattice

– Parent is always chosen to be the one that makes the
child require the minimum memory to compute

– Note that results are produced in dimension order too,
so computation of the entire MMST can be pipelined

• Choose an optimal dimension order to minimize
the total amount of memory required by MMST
– It turns out that this optimal order is D1, D2, …, Dn,

where | D1 | ≤ | D2 | ≤… ≤ | Dn |

29

ROLAP versus MOLAP
• Multiway array cubing algorithm (MOLAP) beats

sorting-based ROLAP algorithms
– Compressed array representation is more compact

than table representation
– Sorting-based ROLAP spends too much time on

comparing and copying
– In MOLAP, order is implied by the array positions

» An alternative ROLAP techinque
– Convert table to array
– Do MOLAP processing
– Dump the result cube to a table 30

Next time

Data mining

