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Preface

These are lecture notes for course Biometrics: R-statistics in Forest Sciences. In writ-

ing these notes, I have used several sources. In writing chapter 1, the main sources have

been the second edition of the classical book “Statistical Inference” by George Casella

and Roger L Berger(Casella and Berger 2002) and “Methods for Forest Biometrics” by

Juha Lappi (Lappi 2006a). In addition, I have used lecture notes of courses on math-

ematical statistics (by Eero Korpelainen) and statistical inference (by Jukka Nyblom).

For chapters 2 and 3, the main sources have been the lecture notes of Jukka Nyblom on

Regression analysis and Linear models, the book of Jose Pinheiro and Douglas Bates

on Linear models with R (Pinheiro and Bates 2000), and the book “Generalized, Lin-

ear and Mixed Models” by CharlesMcCulloch and Shayle R Searle (McCulloch and

Searle 2001). For the GLMs and GLMMs, I have used McCulloch and Searle (2001),

too. The last chapter on models systems is based mainly on book “Econometric anal-

ysis” by William H Greene (Greene 1997). In addition, good sources of information

have been the lecture notes of Annika Kangas on Forest Biometrics, the books of of

Julian Faraway (Faraway 2004, 2006), Keith E Muller and Paul W Stewart (Muller and

Stewart 2006), and William N. Venables and Brian D. Ripley (Venables and Ripley

2002).



Chapter 1

Random variables

1.1 Introduction to random variables

Random variables are real-valued variables with value specified by a random process.

The value the random variable gets is called a realization of the random variable. Thus,

there is a distinction between the random variable and the realized value, the former

being usually denoted by a capital letter and the latter by a lowercase letter.

Example 1.1 As an example, let us think of trees of a large forest stand s. The diameter

of a tree in stand s is a random variable, which can be denoted by X . If we go to the

stand s and observe that the diameter of a randomly selected tree is x, we have obtained

observation X = x.

There are two types of random variables: discrete and continuous. For a discrete

random variable, all possible values can be enumerated. A continuous random variable

can get any values between given minimum and maximum values. The minimum and

maximum can also be infinite.

Example 1.2 In the large forest stand, the tree diameter is a continuous random vari-

able, getting any values between [0,∞]. This interpretation assumes that the number

of trees in the stand is infinite. In reality, only those values can be obtained that occur

in the finite set of trees in the stand.

Example 1.3 Let us define random variable Y as tree species. This random variable

is discrete, as it can get only values y ∈ {1, 2, 3, 4}, where the numbers correspond

to “Pine”, “Spruce”, “Birch” and “Other”. Another example of a discrete random

variable is Z, the number of trees on a sample plot, which can get only integer values.

In this case, all possible values can be numerated, even though the number of possible

values is infinite.

1



2 CHAPTER 1. RANDOM VARIABLES

We may also have two or more random variables that are somehow related. For

example, we may have observed both diameter and height for a tree, thus resulting

our observations to be vectors of length two. The multiple variables may also have

been produced by the same process. For example, Y1 and Y2 may be random variables

“diameter of tree 1” and “diameter of tree 2” from a given stand. The n multivariate

random variables are often combined into a n-dimensional random vector.

Example 1.4 In example 1.3 the observations on tree species and diameter provide

observations of a bivariate random vector.

1.2 Distribution of a random variable

1.2.1 Univariate distribution

The probability of a random variable for getting a specific value is described by the

distribution of the random variable. The distribution of a random variable, also called

the cumulative distribution function (c.d.f) expresses the probability that the random

variable X gets a value that is smaller than or equal to x:

F (x) = P (X ≤ x) for all x

Apparently, the distribution function of a discrete variable has jumps at the possible

values of the random variable, and it is constant elsewhere. In contrast, the distribution

function of a continuous random variable is a continuous function.

Example 1.5 In the large forest stand, we are interested in the distribution of species,

and diameter of individual trees. In addition, we are interested about how many trees

we would get into a sample plot of size 0.01 ha. The left panel of figure 1.1 shows

examples on the distribution functions for tree species, tree diameter and the number

of tree in a large forest stand.

The R-code for Figure 1.1

> windows(width=6, height=7)
> par(mfcol=c(3,2),

mai=c(0.6,0.5,0.1,0.1),
mgp=c(2,0.7,0))

> y<-c(1,2,3,4)
> Fy<-c(0,0.5,0.8,0.95,1.0)
> plot(stepfun(y,Fy),
+ xlab="y",
+ ylab="F(y)",
+ verticals=FALSE,
+ pch=16,
+ main=NA)
>
> # Diameter distribution, c.d.f.
> x<-seq(0,25,0.1)
> Fx<-pweibull(x,5,15)
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Figure 1.1: The cumulative distribution function of tree species (Y ), tree diameter (X),
and the number of trees on a sample plot (Z) (left), and the corresponding probability
mass functions for Y and Z and probability density function for X .
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> plot(x, Fx, type="l",
+ xlab="x", ylab="F(x)")
>
> # Number of trees, c.d.f.
> z<-seq(0,20,1)
> Fz<-ppois(z,7)
> plot(stepfun(z,c(0,Fz)),
+ xlab="z",
+ ylab="F(z)",
+ verticals=FALSE,
+ pch=16,
+ main=NA,
+ xlim=c(0,15))
>
> # Tree species, density.
> fy<-c(0.5,0.3,0.15,0.05)
> plot(y, fy, type="n",
+ xlim=c(0,5), xlab="y", ylab="f(y)")
> sapply(1:4,
+ function(i) lines(y[c(i,i)],c(0,fy[i]),lwd=4,lend="square"))
>
> # Diameter distribution, density.
> fx<-dweibull(x,5,15)
> plot(x,fx,type="l",xlab="x",ylab="f(x)")
>
> # Number of trees, density.
> fz<-dpois(z,7)
> plot(z,fz,xlim=c(0,15),type="n",xlab="z",ylab="f(z)")
> sapply(1:20,
+ function(i) lines(z[c(i,i)],c(0,fz[i]),lwd=4,lend="square"))

For a function F (x) to be a cdf, the following three conditions need to hold (Casella

and Berger 2002).

1. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

2. F (x) is a nondecreasing function of x.

3. F (x) is right continuous, i.e., for any x0, limx→x0 F (x) = F (x0)

Vice versa, any function fulfilling the above conditions is a proper distribution function.

Thus, the function may have jumps, as the distribution functions of Y and Z in figure

1.1 have. The function may also be a mixture of continuous pieces and jumps. For a

continuous random variable, the cdf does not need to be differentiable, and it may be

defined by parts.

Example 1.6 The percentile-based diameter distribution is defined by stating that the

0th, 25th 50th 75th and 100th diameter percentiles are 5, 10, 13, 17, and 24 cm, respec-

tively, and the intermediate values are obtained through interpolating between these

percentiles. These assumptions imply that it is assumed that the cdf satisfies F (5) = 0,

F (10) = 0.25, F (13) = 0.5, F (17) = 0.75, F (24) = 1, and is linear between these.
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Figure 1.2: Illustration of the percentile-based distribution of Example 1.6.

Thus, the cdf is defined by parts:

F (x) =



0 x < 5
−0.25 + 0.050x 5 ≤ x < 10
−0.58 + 0.083x 10 ≤ x < 13
−0.31 + 0.063x 13 ≤ x < 17
0.14 + 0.036x 17 ≤ x < 24
1 x ≥ 24

The left plot of Figure 1.2 shows that the function is increasing, right continuous, and

has a limit of 1 as x goes to infinity. Thus, the function is a proper distribution function.

The matemathical proof is omitted.

The R-code for Figure 1.2

> windows(width=6,height=2.5)
> par(mfcol=c(1,2),
+ mai=c(0.6,0.5,0.1,0.1),
+ mgp=c(2,0.7,0),
+ cex=0.8)
> d<-c(5,10,13,17,24)
> p<-c(0,0.25,0.5,0.75,1)
> a<-(p[-1]-p[-5])/(d[-1]-d[-5])
> b<-p[-5]-a*d[-5]
> plot(c(0,d,30),
+ c(0,p,1),
+ type="l",
+ ylab="Cumulative density",
+ xlab="Diameter, cm")
> plot(c(0,rep(d,each=2),30),
+ c(0,0,rep(a,each=2),0,0),
+ type="l",
+ ylab="Density",
+ xlab="Diameter, cm")

The probability for a random variable to get a value between specified limits [a, b]

can be computed by subtraction

P (a ≤ x ≤ b) = F (b)− F (a). (1.1)
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Example 1.7 In the previous example, the proportion of trees between diameters 20

and 10 cm is

P (10 ≤ x ≤ 20) = F (20)− F (10)

= 0.14 + 0.036× 20− (−0.25 + 0.050× 10)

= 0.61

It was computed using

> F1020<-b[4]+a[4]*20-(b[1]+a[1]*10)
> F1020
[1] 0.6071429

The cumulative distribution function ofX expresses the probability that the random

variable gets the value of x or less. However, we are often interested in the probability

that X would get exactly a certain value x. For discrete random variables, this proba-

bility is given by the probability mass function. It is defined only for a discrete random

variable as

f(x) = P (X = x) for all x

Thus, the pmf gives the point probabilities for the possible values of the discrete

random variable. The relationship between pmf and cdf is simply P (X ≤ x) =∑
k<x f(k) = F (x).

Example 1.8 The pdf and pmf of example 1.5 are shown in the right panel of figure

1.1.

For continuous distributions, a similar relationship holds for continuous distribu-

tions, except for replacement of sum operator by integral. For continuous random

variables

P (X ≤ x) = F (x) =
∫ x

−∞
f(t)dt . (1.2)

Stating it in different way, the probability density function (pdf) of continuous random

variable x is defined as the first derivative of F (x)

f(x) =
d

dx
F (x).

An important distinction appears between pdf and pmf. The value of pmf for x gives

the probability for random variable X to get value x. With continuous distribution,

probability of any distinct value is always 0. For example, the probability of getting

a tree with diameter of exactly 20 cm is always zero. However we have a positive

probability of getting a tree with diameter between 19.95 and 20.05cm, which would be

classified to 20 cm using one millimeter classification in calipering. To compute such

probability, we would need to integrate the density over the one-millimeter diameter

class. This leads to the use of equation (1.1).
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Example 1.9 The density of percentile-based diameter distribution of example 1.6 is

f(x) =



0 x < 5
−0.25 + 0.050 5 ≤ x < 10
−0.58 + 0.083 10 ≤ x < 13
−0.31 + 0.063 13 ≤ x < e17
0.14 + 0.036 17 ≤ x < 24
0 x ≥ 24,

which is shown in the right plot of Figure 1.2.

The following conditions for density (or pmf) f(x) can be deduced from the con-

ditions of a cdf.

1. f(x) ≥ 0 for all x

2.
∑
x f(x) = 1 (pmf) or

∫∞
−∞ f(x)dx = 1 (pdf)

In many cases, we are doing transformations to random variables. For example,

tree volumes may be transformed to log scale before fitting a volume model. It is

important to understand the effect of transformation into the distribution of a random

variable. The usually used transformations are one-to-one or one-to-many transforma-

tions, which mean that a single value of the original variable X corresponds only one

value of Y . This means that the transformation function is always monotonic, either

increasing or decreasing. Let X have cdf FX(x) and define the random variable Y as

g(X). The cdf of Y is

FY (y) =
{
FX(g−1(y)) ifg(x)isincreasing
1− FX(g−1(y)) ifg(x)isdecreasing

Example 1.10 LetX be tree diameter, having cdf according to the Weibull distribution

function

F (x|α, β) = 1− exp
{
−
(
x

β

)α}
,

with values α = 5 and β = 15 for the shape and scale parameters, respectively.

Assume that tree height Y depends on tree diameter according to the power function

Y = g(X) = aXb ,

where the parameters are is a = 8 and b = 0.3. With these values for parameters, the

assumed H-D curve is an increasing function of tree diameter. For the distribution of

tree heights, we need the inverse of the H-D curve, g−1(y) = 1
ay

1/b. The distribution

of tree heights is obtained directly by writing the inverse transformation into the cdf of
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diameter. We get

F (y|α, β, a, b) = 1− exp

{
−

(
1
ay

1/b

β

)α}
(1.3)

= 1− exp

{
−
(

y

(aβ)b

)α/b}
= F (y|α/b, aβb), (1.4)

Which shows that, assuming a Waibull distribution for tree height and a power equation

as the H-D curve, the tree height is also distributed according to Weibull distribution

with shape and scale parameters α/b and aβb. Figure 1.3 illustrates the applied trans-

formations and distributions of diameter and height. Note that this is not a general

results, but it holds only for these specific functions. In general, there is no rule that

the functional form of the distributions of tree height and diameter would be the same.

The R-code for Figure 1.3

> windows(width=6,height=7)
> par(mfcol=c(3,2),mai=c(0.6,0.5,0.5,0.1),mgp=c(2,0.7,0))
> x<-seq(0,25,0.10)
> a<-8
> b<-0.2
> alpha<-5
> beta<-15
> Fx<-pweibull(x,alpha,beta)
> fx<-dweibull(x,alpha,beta)
> # plot the cdf and density of diameter distribution
> plot(x,Fx,xlab="x",ylab=expression(F[X](x)),type="l",main="cdf of diameter")
> plot(x,fx,xlab="x",ylab=expression(f[X](x)),type="l",main="pdf of diameter")
> # define the power function
> powerf<-function(x,a,b) {
+ a*xˆb
+ }
> # the inverse of power function
> power.inv<-function(y,a,b) {
+ (y/a)ˆ(1/b)
+ }
> # plot the HD-curve
> plot(x, powerf(x,a,b), type="l",
+ xlab="x", ylab="g(x)" main="HD-curve")
> y<-seq(8,17,0.1)
> Fy<-pweibull(y,alpha/b,a*betaˆb)
> fy<-dweibull(y,alpha/b,a*betaˆb)
> # plot the cdf and density of height distribution
> plot(y, Fy, type="l",
+ xlab="y, m", ylab=expression(F[Y](y)), main="cdf of height")
> plot(y, fy, type="l",
+ xlab="y, m", ylab=expression(f[Y](y)), main="pdf of height")
> # compute the cdf in another way
> Fy2<-pweibull(power.inv(y,a,b),alpha,beta)
> # Check graphically that the two ways gave the same result
> plot(Fy, Fy2,
+ main=expression("Match between "*F[X]*({gˆ-1}(y))*" and "*F[Y](y)))
> abline(0,1)

Another way of deriving the distribution of a transformation random variables with

a continuous density can be stated through pdf. If X has pdf fX(x) and g(X) is a

monotone transformation, with g−1(y) having a continuous derivative, then the pdf of
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y in the support of Y is

fY (y) = fX(g−1(y))
∥∥∥∥ ddy g−1(y)

∥∥∥∥ , (1.5)

and 0 elsewhere.

Example 1.11 Forestry student has taken observations on the thickness of Norway

spruce needles. The observations are skewed to the right, and are naturally all posi-

tive. Based on these observations, she assumes that the needle thickness is distributed

according to the lognormal distribution, which has the pdf

fX(x) =
1√

2πσ2

e−(log(x)−µ)2/(2σ2)

x
.

For modeling purposes, she makes the logarithm transformation Y = g(X) = ln(X)

to the observations. The inverse function of the applied transformation g−1(y) = ey

is continuous and increasing, and has derivative d
dy g

−1(y) = ey . The distribution of

logarithmic observations is

fY (y) =
1√

2πσ2

e−(x−µ)2/(2σ2)

ey
ey

=
1√

2πσ2
e−(x−µ)2/(2σ2) ,

which is the density of normal distribution with mean µ and variance σ2.

Example 1.12 The radius of a tree crown between the height of maximal crown ra-

dius and total height h can be expressed by an ellipsoid centered at (x0h, y0h), x0 <

1, y0 < 0, and having half-axes ah and bh. Having an airborne laser scanning (ALS)

in mind, we can assume that the observable crown radius remains constant after that,

even though the actual radius decreases. The function based on these assumptions is

defined by parts as

Y (z) =


h (y0 + b) z ≤ x0h

h

{
y0 + b

√
1− ( z

h−x0)2

a2

}
x0h < z ≤ h

0 z > h

, (1.6)

where a =
√

b2(1−x0)
2

b2−y2
0

is defined so that Y (z, h) passes through point (h, 0), the tree

top. The assumed function is illustrated in figure 1.4 using parameter values h = 20,

x0 = 0.2, y0 = −0.1, and b = 0.25.

Airborne laser scanner could be used to produce observations on the height of

canopy surface at given points. Let random variable Z describe the height of tree
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crown at random location within a single tree crown. The distribution of Z would be

the proportion of crown area below z of the total area:

P (Z < z) =
Amax −A(z)

Amax
= 1− A(z)

Amax
.

With the ellipsoid tree crown, the maximum area is obtained at height x0, Amax =

πh2(y0 + b)2. The crown area at any height between x0 and h is A(z) = πY (z)2. The

distribution of Z becomes

FZ(z) = 1−
y2
0 + 2y0b

√
1− ( z

h−x0)2

a2 + b2
(

1− ( z
h−x0)2

a2

)
(y0 + b)2

The density is obtained by differentiating with respect to z

fZ(z) =
1

(y0 + b)2

[
2b2

a2h

( z
h
− x0

)
+ y0b

(
1−

( zh − x0)2

a2

)−1/2
2
a2h

(z/h− x0)

]
(1.7)

An interesting result is obtained when y0 = 0, i.e., when the center of ellipsoid is at the

x-axis:

fZ(z) =
2
a2

( z
h
− x0

)
,

which is the density of the triangular distribution illustrated in the lower right plot of

Figure 1.4.
The R-code for Example 1.12

> # Ellipsoidial tree crown
> radius.ellipse<-function(x,b,x0=0,y0=0,h) {
+ x<-x
+ a<-sqrt(bˆ2*(1-x0)ˆ2/(bˆ2-y0ˆ2))
+ r<-rep(h*(y0+b),length(x))
+ r[x>x0*h&x<=h]<-h*(y0+b*sqrt(1-(x[x>x0*h&x<=h]/h-x0)ˆ2/aˆ2))
+ r[x>h]<-0
+ r
+ }
>
> # cdf of laser observations
> cdf.laser<-function(x,b,x0,y0,h) {
+ a<-sqrt(bˆ2*(1-x0)ˆ2/(bˆ2-y0ˆ2))
+ value<-rep(0,length(x))
+ value[x>=x0*h&x<h]<-1-
+ (y0ˆ2+2*y0*b*sqrt(1-(x[x>=x0*h&x<h]/h-x0)ˆ2/aˆ2)+
+ bˆ2*(1-(x[x>=x0*h&x<h]/h-x0)ˆ2/aˆ2))/(y0+b)ˆ2
+ value[x>=h]<-1
+ value
+ }
>
> # corresponding density
> pdf.laser<-function(x,b,x0,y0,h) {
+ a<-sqrt(bˆ2*(1-x0)ˆ2/(bˆ2-y0ˆ2))
+ value<-rep(0,length(x))
+ value[x>x0*h&x<h]<--1/(y0+b)ˆ2*
+ (y0*b*(1-(x[x>x0*h&x<h]/h-x0)ˆ2/aˆ2)ˆ(-1/2)*
+ (-2/(aˆ2*h)*(x[x>x0*h&x<h]/h-x0))+
+ bˆ2*(-2/(aˆ2*h)*(x[x>x0*h&x<h]/h-x0)))
+ value
+ }
> x0<-0.2
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> y0<--0.1
> b<-0.25
> h<-20
> x<-seq(0,22,0.01)
> r<-radius.ellipse(x,b,x0,y0,h)
> windows(width=6, height=5)
> par(mfcol=c(2,2), mai=c(0.6,0.5,0.1,0.1), mgp=c(2,0.7,0), cex=0.8)
> plot(x, r, type="l",
+ xlab="Height, m", ylab="Crown radius, m", ylim=h*c(-0.1,0.15))
> points(h*x0,h*y0)
> text(h*x0, h*y0,
+ expression((hx[0]*paste(",")*hy[0])), pos=4)
> lines(h*rep(x0,2), h*c(y0,y0+b), lty="dashed")
> points(h*rep(x0,2), h*c(y0,y0+b), pch="--")
> text(h*x0, h*(y0+b/2), "hb", pos=4)
> lines(c(0,h), c(0,0), lty="dashed")
> points(c(0,h), c(0,0), pch="I")
> text(h/2, 0, "h", pos=3)
>
> plot(x, cdf.laser(x,b,x0,y0,h), type="l",
+ xlab="Height, m", ylab="Cumulative density")
>
> plot(x, pdf.laser(x,b,x0,y0,h), type="l",
+ xlab="Height, m", ylab="Density")
>
> plot(x, pdf.laser(x,b,x0,0,h), type="l",
+ xlab="Height, m", ylab="Density")

In addition to cdf and pdf (or pmf), one function describing th distribution is the

quantile function, which is defined as the inverse of the cdf

qX(u) = F−1
X (y)

This function is useful, for example in random number generation. However, it may

not be possible to solve it analytically. Assume that X has continuous cdf FX(x) and

let random variable Y be Y = FX(x). Random variable Y is uniformly distributed be-

tween 0 and 1. Assume that we want to generate random variables that have cdf F(x),

and assume that we have observations of random variable U , which has uniform dis-

tribution between 0 and 1. A random sample from the desired distribution is obtained

through transformation qX(U).

Example 1.13 Random number generation from percentile-based diameter distribu-

tion

1.2.2 Multivariate distribution

The distribution of a random vector is expressed with a multivariate distribution. The

multivariate distribution is the joint distribution of the component variables of the ran-

dom vector. It completely defines the probabilities of all possible value combinations

of the component variables of a random vector. For a bivariate case, let us denote these

components by X1 and X2, the random vector being then X = (X1, X2)′. In this

case, the joint distribution gives the probabilities for all possible realizations of pair

X1 and X2. The joint distribution can be used to construct conditional and marginal
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Figure 1.4: Illustration for example 1.12 using parameter values h = 20, x0 = 0.2,
y0 = −0.1, and b = 0.25. The upper left figure shows the crown radius as a function
of height. The cdf of laser observations is shown in the lower left figure, and the
corresponding density in the upper right figure. The lower right figure illustrates the
triangular density, obtained using y0 = 0.
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probability distributions of any single component variable of the random vector joint

distribution

The conditional distribution expresses probability of one component variable for

given values of the other variables. For example, the distribution of ofX1|X2 = x2 de-

fines the distribution ofX1 given thatX2 has got the value of x2. Thus, the conditional

distribution is a univariate distribution in this case. For a random vectors of length 3

or more, a univariate conditional distribution is obtained by conditioning on all other

component variables. For example, for random vector X = (X1, X2, . . . , Xn),we

may be interested in conditional distribution of X1|X2 = x2, . . . , Xn = xn. The

conditional distribution may also be multivariate. For example, the distribution of

(X1, X2)|X3 = x3 is a bivariate distribution.

The marginal distribution of a random variable is the distribution in the whole pop-

ulation, assuming that no information on other random variables is available or used.

The marginal probability is obtained as the sum of probabilities of Y = y over the joint

distribution. Thus, in a cross table of a joint distribution, the marginal distribution is in

the lower or right marginals of the table, which gives the name “marginal”. For a dis-

crete random variable, the probabilities for any distinct value of marginal distribution

is obtained as weighted average of conditional probabilities. For a continuous variable,

the sums are replaced with integration.

The marginal distribution can be derived from the joint distribution. However, the

joint distribution cannot be derived from marginal distribution without additional as-

sumptions on the relationship between the components.

Example 1.14 Assume that trees have been observed for species and health. The

species is coded in the classes of example 1.3, and health in classes 1, 2 and 3, in-

dicating dead, weakened, and healthy, respectively. The joint pmf of the two discrete

variables can be expressed in tabular form

Y
1 2 3 4

∑
1 0.1 0 0.1 0.01 0.21

X 2 0.1 0 0.05 0.02 0.17
3 0.3 0.3 0 0.02 0.62∑

0.5 0.3 0.15 0.05

The conditional distribution of X|Y = 1, i.e., the distribution of Scots pine trees into

three classes can obtained by dividing the values of the first column by the marginal

probability of Scots pine. The conditional probabilities are 0.2, 0.2 and 0.6 for dead,

weakened, and healthy, respectively.
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The conditional distribution Y |X = 1 is the distribution of dead trees by species.

The conditional probabilities, obtained by dividing the values of the first row with the

row sum of 0.21, are 0.476, 0,000, 0.476, 0.048 for tree species 1, 2, 3 and 4, respec-

tively.

The marginal distributions of tree species are given in last column and row of the

table.

Let X be a random vector

X =


X1

X2

. . .
Xn


In the continuous bivariate case, the joint probability density function is a function

that expresses that the value of random vector (X,Y ) falls within A ∈ <:

P ((X,Y ) ∈ A) =
∫
A

f(x, y)dxdy .

For example, the probability that X gets a value between a and b, and Y bets a value

between c and d is P (a < X ≤ b, c < Y ≤ d)) =
∫ b
a

∫ d
c
f(x, y)dxdy.

The marginal pdf is obtained by integrating out the other component variables. For

a bivariate case, this implies that

fY (y) =
∫ ∞

−∞
f(x, y)dx .

This generalizes also for the multivariate random vector of length n. The marginal

density of the k the component variable is

f(xk) =
∫ ∞

−∞
. . .

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
(1.8)

f(x1, . . . , xk−1, xk, xk+1, . . . , xn)dxn . . . dxk+1, dxk−1 . . . dx1 .

This is a function of only xk, i.e., it is a density of one-dimensional random variable.

For such a distribution, all results of section 1.2.1 apply.

From the conditions set for a univariate pdf, it can be generalized that any function

for which f(x, y) ≥ 0 for all (x, y) ∈ <2, and which satisfies∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy = 1

is a bivariate joint density function for some random vector (X,Y ).
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The definition of joint distribution function is analogous to the univariate case

F (X) = P (X ≤ x)

= P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

=
∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
f(u1, u2, . . . , un)dun . . . du2du1

=
∫ x

−∞
f(u)du

The marginal pdf of the kth component is obtained using (1.8) in (1.2). Thus,

we just integrate the marginal density from −∞ to xk. But this integral is same as

the conditional distribution function at x = (∞, . . . ,∞, xk,∞, . . . ,∞). Thus, the

marginal cdf of the kth component variable is

FXk
(xk) = F∞, . . . ,∞, xk,∞, . . . ,∞) .

Example 1.15 Let the joint distribution of tree diameter x and height y be expressed

by a bivariate density f(x, y). The marginal density of diameter is

fX(x) =
∫ ∞

−∞
f(x, y)dy

. The marginal density of height is

fY (y) =
∫ ∞

−∞
f(x, y)dx

Two random variables are independent if

p(x, y) = p(x)p(y) for discrete X (1.9)

fXY (x, y) = fX(xfY (y) for continuous X . (1.10)

1.3 Expectation, variance and covariance

1.3.1 Expectation

In many cases, the distribution of a random variable is unknown, and we don’t want

to make strong assumptions on it. However, we may want to make inference about

the behavior of the random variable. In such case, we can summarize the most inter-

esting and important characteristics to some summary figures, that describe the most

important properties of the random variable we are interested in.

The most commonly used characteris for describing the properties of a random

variable is probably its expected value. The expected value is merely the mean of

the random variable, which describes the average of the distribution, or the center of
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gravity. The expected value is a number that used in the hope that it would as well

as possible summarize the typical or expected value of an observation drawn from the

underlying distribution.

The expected value of random variable X is defined as

EX =
{ ∑

j pjxj for discrete X∫∞
−∞ xfX(x)dx for continuous X (1.11)

It is also possible that the expected value is Infinity, if the tails of the distribution are

thick or heavy enough.

Example 1.16 The mean diameter in the stand of example 1.9 is

E(x) =
∫ ∞

−∞
xfX(x)dx

=
∫ 10

5

0.05xdx+ . . .+
∫ 24

17

0.036xdx

=
/10

5

0.05
2
x2 + . . .+

/24

17

0.036
2

x2

=
1
2
[
0.05(102 − 52) + . . .+ 0.036(242 − 172)

]
= 13.625

It was computed using

> # The mean diameter
> mu<-sum(a/2*(d[-1]ˆ2-d[-5]ˆ2))
> mu
[1] 13.625

The expected value for function g(X) is defined analogously

E[g(X)] =
{ ∑

j pjg(xj) for discrete X∫∞
−∞ g(x)fX(x)dx for continuous X (1.12)

Example 1.17 In the large forest stand of Example 1.3, the random variable X , tree

species, gets values 1, 2, 3 and 4 with probabilities 0.5, 0.3, 0.15, 0.05, respectively.

The mean height by species is expressed as

g(x) =


18 x = 1
15 x = 2
12 x = 3
22 x = 4

The mean height is

EH =
∑
j

pjg(Xj) = 0.5× 18 + 0.3× 15 + 0.15× 12 + 0.05× 22 = 16.4
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Expected value has the following properties

E(c) = c (1.13)

E(cX) = cE(X) (1.14)

E(X + Y ) = E(X) + E(Y ) , (1.15)

where c is a constant and Y and Y random variables. These properties hold also when

X and Y are correlated.

The expected value of a bivariate random variable is just a vector of the expecta-

tions of the component variables, where expectations are defined through the marginal

distribution. Thus, computing the expectation of a joint density requires only knowl-

edge of the marginal distributions. However, if a transformation depends on several

components, the joint density of the related components is needed. For example, the

expectation of a bivariate transformation g(X,Y ) which depends on a bivariate random

vector (X,Y ) is analogously to (1.12)

E[g(X,Y )] =
{ ∑

i

∑
j pijg(xi, yj) for discrete (X,Y )∫∞

−∞
∫∞
−∞ g(x, y)f(x, y)dyx for continuous (X,Y ) (1.16)

Example 1.18 Consider again example 1.15. The expected value of diameter is just

the expected value over the marginal distribution of diameters

E(X) =
∫ ∞

−∞
xfX(x)dx .

Correspondingly, the mean height is the expected value over the marginal distribution

of heights

E(Y ) =
∫ ∞

−∞
yfY (y)dy .

As an example of the expected value of a bivariate transformation, assume that the

volume as a function of diameter and height is given by v(x, y). The mean volume is

the expected value of v(x, y)

E(v(X,Y )) =
∫ ∞

−∞

∫ ∞

−∞
v(x, y)f(x, y)dxdy .

1.3.2 Variance and standard deviation

In addition to the mean of a random variable, we may be interested in how much the

values of a random variable vary around the mean. This variation is described by the

variance, which is defined as the expected value of the squared difference between the

random variable and its mean:

varX = E(X − EX)2 .
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For the shake of simplicity, denote constant EX by µ. A computationally better form

is obtained through simple algebra as

varX = E(X − µ)2

= E
(
X2 − 2µEX + µ2

)
= E

(
X2 − 2µ2 + µ2

)
= E

(
X2
)
− µ2 (1.17)

Variance is not easy to interpret. A more easy-to-interpret measure for the variation

around mean is standard deviation, which is the square root of standard deviation

sd(X) =
√

var(X) (1.18)

It has the same unit as X . In practice, variance is usually used in computations, and

the results are transformed to standard deviations for interpretation.

Example 1.19 For the variance of tree diameter in Example 1.9, we need to compute

µ = E(X) and E(X2). From example 1.16, µ = 13.625. Equation (1.12) gives

E(X2) =
∫ ∞

−∞
x2fX(x)dx

=
∫ 10

5

0.05x2dx+ . . .+
∫ 24

17

0.036x2dx

=
/10

5

0.05
3
x3 + . . .+

/24

17

0.036
3

x3

=
1
3
[
0.05(103 − 53) + . . .+ 0.036(243 − 173)

]
= 210.5

The variance is

varX = E
(
X2
)
− µ2

= 210.5− 13.6252

= 24.86 ,

which gives standard error sd(X) =
√

24.86 = 4.99.
These results were computed using

> # The second moment
> mu2<-sum(a/3*(d[-1]ˆ3-d[-5]ˆ3))
> mu2
[1] 210.5
>
> # Variance
> sigma2<-mu2-muˆ2
> sigma2
[1] 24.85938
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These results mean that taking randomly trees from a stand with the assumed

percentile-based distribution, the mean diameter would in long run be 13.6 cm. The

sampled tree diameters would differ from 13.6 cm, on average, by 5 cm in long run.

1.3.3 Covariance and correlation

The average linear joint variation of random variables X and Y is called covariance.

Consider the difference of X from the expected value E(X), and correspondingly, the

difference of Y from its expected value E(Y ). The covariance is the expected value of

the product of these differences:

cov(X,Y ) = E {[E(X − E(X))] [E(Y − E(Y ))]} (1.19)

Computing the product by components and simplifying gives an alternative form of

cov(X,Y ) = E(XY )− E(X)E(Y ) (1.20)

Covariance is a special case of variance. It can be seen by computing the covariance of

X with itself,

cov(X,X) = E(XX)− E(X)E(X)

= E(X2)− [E(X)]2

= var(X) . (1.21)

Example 1.20 To compute the covariance between tree diameter and height in exam-

ple 1.15, we need to compute the expected value of the product of diameter and height.

It is obtained using equation (1.16) as (in this case, g(X,Y ) = XY )

E(XY ) =
∫ ∞

−∞

∫ ∞

−∞
xyf(xy)dydx

The expected values of X and Y were given in example 1.18. The covariance can be

computed as cov(X,Y ) = E(XY )− E(X)E(Y ).

As was variance, also covariance is hard to interpret, because it depends on the

variation of the original variables. However, the covariance can be scaled to a much

more easy-to-interpret figure, called correlation. The correlation is defined as

corr(X,Y ) =
cov(X,Y )

sd(X)sd(Y )
. (1.22)

The correlation varies between -1 and 1. The higher the absolute value of correlation

is, the stronger is the linear relationship between X and Y . If the absolute value of

correlation is 1, the relationship between X and Y can be exactly expressed by Y =
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aX + b, where a and b are constants. If correlation is negative, a is negative, and if

correlation is positive, a is positive. If correlation (and covariance) is 0, the random

variables are uncorrelated. Correlation is related to independence so, that independent

random variables are uncorrelated. However, uncorrelated variables are not necessarily

independent.

Example 1.21 Correlations for example 1.15

The properties related to the mean of a random variable are sometimes called the

first order properties. The properties related to variance and covariance are called the

second order properties. These are related to the moments of the distribution: expected

value is the first moment and variance is the second moment of the distribution. The

moments for a distribution function can be computed using the moment generating

function. The third and fourth moment, which are seldom used are the skewness and

kurtosis. The analysis of a statistical model is mostly based on the first and second order

properties of the random variable, and more detailed assumptions on the distribution

are usually needed only for testing purposes.

1.3.4 Algebraic rules for variance, and covariance

The following rules are useful in calculating of variance

var(aX) = a2var(X) (1.23)

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ) (1.24)

var(X − Y ) = var(X) + var(Y )− 2cov(X,Y ) (1.25)

Combining rules (1.24) and (1.25) with rule (1.23) gives

var(aX + bY ) = a2var(X) + b2var(Y ) + 2abcov(X,Y ) (1.26)

var(aX − bY ) = a2var(X) + b2var(Y )− 2abcov(X,Y ) (1.27)

The following rules are useful in computations of covariance

cov(X,Y ) = cov(Y,X) (1.28)

cov(X,Y + Z) = cov(X,Y ) + cov(X,Z) (1.29)

cov(aX, bY ) = abcov(X,Y ) (1.30)

Combining rules (1.29) and (1.30) gives

cov(aX+bY, cZ+dW ) = accov(X,Z)+adcov(X,W )+bccov(Y,Z)+bdcov(Y,W ) ,

(1.31)
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where X , Y , Z, and W are random variables and a, b, c, and d are constants. It can be

shown that all rules (1.23) – (1.30) are special cases of rule (1.31).

Adding a constant to a random variable has no effect on variance and covariance

var(X + a) = var(X) (1.32)

cov(X + a, Y + b) = cov(X,Y )) (1.33)

1.3.5 Covariance and correlation matrices

The second order properties of a random vector can be described with a matrix called

variance-covariance matrix, also called variance matrix or covariance matrix. The

matrix summarizes all variances and covariances into a single matrix. Let X =

(X1, X2, . . . , Xk) be a random vector. The covariance matrix of is defined as

var(X) = E{[X − E(X)][X − E(X)]′}

=


var(X1) cov(X1, X2) · · · cov(X1, Xk)

cov(X2, X1) var(X2) · · · cov(X2, Xk)
...

...
. . .

...
cov(Xk, X1) cov(Xk, X2) · · · var(Xk)


Applying (1.28) shows that the variance-covariance matrix is symmetric. It also posi-

tive semidefinite (proof is omitted).

The covariance matrix of random vectors Xk and Yp is a k × p matrix, defined as

cov(X, Y ′) = E{[X − E(X)][Y − E(Y )]′}

=


cov(X1, Y1) cov(X1, Y2) · · · cov(X1, Yp)
cov(X2, Y1) cov(X2, Y2) · · · cov(X2, Yp)

...
...

. . .
...

cov(Xk, Y1) cov(Xk, Y2) · · · cov(Xk, Yp)

 .

Remembering from (1.21) that variance is a special case of covariance, it can be seen

that the variance-covariance matrix of X is just a special case of the covariance matrix:

var(X) = cov(X, X).

In the univariate case, correlation was obtained from covariance by dividing the

covariance by the product of standard deviations. Correspondingly, the correlation

matrix is obtained by multiplying the covariance matrix from by a diagonal matrix

including the inverted standard deviations

cor(X, Y ) = diag[var(X)]−1/2cov(X, Y )diag[var(Y )]−1/2 ,

where

diag[var(X)]−1/2 =


1

sd(X1)
0 · · · 0

0 1
sd(X2)

· · · 0

. . . . . .
. . . . . .

0 0 · · · 1
sd(Xk)

 ,
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and correspondingly for y.

The algebraic rules of the previous section generalize also for matrices. Equations

(1.14), (1.23), and (1.30) generalize to

E(a′X) = a′E(X) (1.34)

var(a′X) = a′var(X)a (1.35)

cov(a′X, b′Y ) = a′cov(X, Y ′)b (1.36)

1.3.6 Sample estimators

The previous sections have shown several important rules for computations on random

variables. However, the distributions of random variables are seldom known, nor are

the expectations, variances and covariances. In most cases, we have collected obser-

vations on the realizations of the random variables. Using these realizations, we can

estimate interesting statistics such as sample means and sample variances.

Let us define random variables X1, X2, . . . , Xn to describe a certain characteristic

of n different sampling units. The sample mean of is the random variable

X̄ =
X1 +X2 + . . .+Xn

n
=

1
n

n∑
i=1

Xi

The randomness of X̄ is due to the randomness of Xi. The sample mean X̄ is just

a sum of random variables, X1, . . . , Xn, which is multiplied by constant 1/n. If the

expectation and variance ofX1, . . . , Xn are known, the expected value and variance of

X̄ can be derived from rules (1.14), (1.15), (1.23), and (1.24).

The sample variance is defined as

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 .

The sample standard deviation is defined analogously to (1.18) as S =
√
S2.

Example 1.22 Let X1, X2, . . . , Xn be describe the diameters of trees 1, 2, . . . , n from

a forest stand, all of which have the same expected value µ and variance σ2. We

assume that the diameters are independent. The mean diameter of n trees, X̄ , is a
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random variable that has expectation

E(X̄) = E(
1
n

n∑
i=1

Xi)

=
1
n

E(
n∑
i=1

Xi)

=
1
n

n∑
i=1

E(Xi)

=
1
n
nE(Xi)

= µ .

The second line resulted from application of rule (1.14) and the third row from appli-

cation of rule (1.15).

The variance of mean diameter X̄ would be

var(X̄) = var(
1
n

n∑
i=1

Xi)

=
(

1
n

)2

var(
n∑
i=1

Xi) ,

which was obtained through application of rule (1.23). Independence of Xi implies

that cov(Xi, Xj) = 0 for all i 6= j. Using rule (1.24) we get

var(X̄) =
(

1
n

)2 n∑
i=1

var(Xi)

=
1
n2
nσ2

=
1
n
σ2

The standard deviation of mean diameter of the sample would be sd(X̄) = σ/
√
n.

The above definitions used uppercase letters to show that these quantities are ran-

dom variables, not realizations. The realizations of sample statistics are obtained by

replacing random variable X with its realization x. Those realized values of X̄ , S2,

and S would be denoted by x̄, s2, and s.

Example 1.23 Assume that we have independently taken observations of diameter for

4 trees in stand, x1 = 15, x2 = 4, x3 = 12, and x4 = 11cm. The sample mean is

x̄ =
1
4
(15 + 4 + 12 + 11) = 10.5cm .
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The sample variance is

s2 =
1
4
[
(15− 10.5)2 + (4− 10.5)2 + (12− 10.5)2 + (11− 10.5)2

]
= 21.67cm2 .

The sample standard deviation is s =
√

21.67 = 4.65cm.

Consider the sum of squares
∑
i = 1n(xi − a)2 as a function of a. The value of

a that minimizes is the sample mean is x̄. This result is related to the least squares

estimation, which will be introduced in the next chapter. The sample variance can also

be expressed in a form corresponding to (1.17) as (n − 1)s2 =
∑
i = 1n(xi − x̄)2 =∑

i = 1nx2
i − nx̄2. This is useful in computations, as it expresses

Let random variables Y1, Y2, . . . , Yn describe some other property of the same sam-

pling units as X1, X2, . . . , Xn. The sample covariance is defined as

C =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) .

The sample correlation can be defined using sample covariance and sample stan-

dard deviation in equation (1.22). The expression reduces to

R =
∑n
i=1 (Xi − X̄)(Yi − Ȳ )√∑n

i=1 (Xi − X̄)2
∑n
i=1 (Yi − Ȳ )2

.

As with other sample statistics, C and R are random variables. The realizations c and

r are obtained by utilizing the observed sample values in the equations.

A form corresponding to (1.20) is obtained as (n− 1)s2 ==
∑
i = 1nxiyi−nx̄ȳ.

Note that the nominator includes n− 1 instead of n, which would intuitively sound

better justified. The reason for having n − 1 is due to one degree of freedom that

was used for estimating x̄. As noted in equation a few paragraphs earlier, x̄ yields the

minimum value for the sum of squares applied in the estimation of variance. Thus, the

sum of squares having the true unknown expectation,
∑
i (Xi − E(X))2, is necessarily

greater than or equal to
∑
i (Xi − X̄)2. Thus, the utilized sum of squared is a down-

ward biased estimator for the true sum of squares. This underestimation is accounted

for by using n − 1 instead of n in the denominator. The presented formulas yield un-

biased estimators for the population variance and covariance, whereas the alternative

estimators having n in the nominator would yield downward biased estimates.

1.4 Common distribution functions

This section shortly presents distribution functions that are important in linear model-

ing applications. The distributions are classified in three classes: Discrete distributions,

continuous distributions, and distributions of important functions of Standard normal
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variable. The last two classes differ in that the third class is derived for inference on

normally distributed populations.

1.4.1 Discrete distributions

Bernoulli and Binomial distribution

A bernoulli trial has two possible discrete outcomes: success and failure. A random

variable X has Bernoulli(p) distribution if it takes the value of 1 (“success”) wit proba-

bility p, and value 0 (“failure”) with probability 1−p. The expected value and variance

of X are obtained using equations (1.11) and (1.17) as

E(X) = 1p+ 0(1− p) = p

E(X2) = 12p+ 02(1− p) = p

var(X) = E(X2)− [E(X)]2 = p− p2 = p(1− p)

Assume that we make n independent bernoulli trials, and let Y be the number of

successes. The variable Y is said to have a Binomial(n, p) distribution with parameters

n and p, which has pmf

P (Y = y|n, p) =
(
n

x

)
py(1− p)n−y

In forestry, binomial distribution may be used, for example, to present plant health or

survival, tree species, etc. The expectation and variance of binomial distribution can

be deduced using rules (1.15) and (1.24) as

E(Y ) = np

var(Y ) = np(1− p)

A generalization of binomial distribution is the Multinomial(n, p1, . . . , pk) distri-

bution, where the number of classes is k instead of 2, the number of classes in the

binomial distribution. Let random variable Z be “the number of bernoulli trials needed

to get r successes”. Then Z would have the Negative binomial(r, p) distribution. Such

a distribution could be used, for example, in assessing how many trees should be bored

in a field experiment to get at least r trees with a butt rot infection.

In R, functions dbinom, pbinom, qbinom can be used for computing pmf,

cdf and inverse cdf of the binomial distribution. Function rbinom can be used for

generating a sample from a specified binomial distribution. The corresponding func-

tions for multinomial and negative binomial are (guess what they do) dmultinom,

rmultinom, rnegbin.
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Poisson distribution

Poisson distribution is a discrete distribution, that can be used for modeling of counts.

It takes only nonnegative integer values. It can be used, for example, in modeling the

number of individuals in a line, if new individuals enter and leave the line at random.

If trees in a forest stand are located completely randomly, the number of trees within a

fixed area is distributed according to the Poisson(λ) distribution. Random variable X

has the Poisson distribution if the pmf is

P (X = x|λ) =
e−λλ

x

x!

where λ is the parameter, which is often called intensity. In the random forest example,

it is the stand density (trees per area unit). Both mean and variance of Poisson random

variable can be shown to be λ. The lower plots in figure 1.1 show an example of the

Poisson distribution.

R has functions dpois, ppois and rpois for computing pmf, cdf and inverse

cdf of the Poisson distribution. There is also function rpois for generating Poisson

distributed random numbers.

1.4.2 Continuous distributions
Continuous uniform distribution

The Uniform(a, b) distribution is defined by spreading the probability mass uniformly

over interval [a, b]. The cdf of uniform distribution is

F (x|a, b) =


0 x < a

a
a−b + 1

b−ax a ≤ x < b

1 x ≥ b
,

and the density is

f(x|a, b) =
{

1
b−a a ≤ x < b

0 otherwise
.

The expectation and variance are E(X) = b−a
2 and var(X) = (b−a)2

12 .

R has functions dunif, punif, qunif and runif for density, distribution

function, quantile function and random number generation with uniform distribution.

Uniform distribution is seldom a good assumption for a distribution of a random vari-

able. However, uniform random numbers are very often needed in simulations. They

are also needed in generating random numbers from any specific distribution using the

probability integral transformation approach.

Example 1.24 One wants to simulate 10 tosses of a coin. One alternative to proceed

is to simulate 10 random numbers from the Uniform(0, 1) distribution. Realizations
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Figure 1.5: The left plot shows the quantile function of the percentile-based diameter
distribution. The Right plot shows the simulated sample (1 cm classes), and the true
underlying density (thick line)

smaller than 0.5 are interpreted as heads (H) and realizations equal to or above 0.5 as

tails (T). The random numbers obtained using runif(10) are 1 1 0 1 1 0 0 1 1 0,

results simulated tosses H H T H H T T H H T.

Example 1.25 Generate 1000 random numbers from the percentile-based distribution

of example 1.6. The quantile function of the percentile-based diameter distribution is

q(p) = F−1(p) =


5 + 20p 0 ≤ p < 1/4
7 + 12p 1/4 ≤ p < 1/2
5 + 16p 1/2 ≤ p < 3/4
−4 + 28p 3/4 ≤ p < 1

First, 1000 random numbers, denoted by u1, . . . , u1000, were generated from Uniform(0, 1)

distribution. These values were transformed to percentile-based random numbers us-

ing y = q(u). Figure 1.5 shows the utilized quantile function and the histogram of the

simulated random sample.

Normal distribution

The normal (Gaussian) distribution is probably the most well-known statistical distri-

bution. (Casella and Berger 2002) mention three main for the special role of Normal

distribution among the body of statistics. First, Normal distribution is very tractable

analytically. Second, the shape of Normal distribution is the symmetric Bell-shape,

which makes it an appealing alternative for many population models. Third, the central

limit theorem shows that the normal distribution is a good approximation for several

distributions under mild conditions and with large sample sizes.

The density of normal distribution N(µ, σ2) is

f(x|µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,
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where E(X) = µ and var(X) = σ2. The cdf of normal distribution cannot be ex-

pressed in a closed form. The standard Normal distribution is the normal distribution

with mean of 0 and variance of 1, N(0,1).

It is interesting and important to note that the sum of independent normal random

variables X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) is also normal with X1 + X2 ∼

N(µ1+µ2, σ
2
1 +σ2

2). In several statistical tests, including the tests related to regression

analysis and the linear model, the random variables to be analyzed are assumed to

follow the normal or multinormal distribution. However, it should be pointed out that

normal distribution needs not to be assumed in the estimation of parameters using the

methods based on least squares. The central limit theorem states that the distribution

of the means from samples of same size approaches the normal distribution as sample

size gets large, regardless of the distribution of the random variable in the population.

Example 1.26 Assume that the lifetime of a butterfly is highly skewed to the right,

having distribution shown in the upper left plot of Figure 1.6. 1000 samples of size 5,

10 and 20 were taken from the population. The other plots of 1.6 show the distributions

of sample means with the three applied sample sizes. The sample mean approaches the

normal distribution quite fast, being fairly close to normal even with sample size of 10.

Multivariate normal distribution

Random vector Yn×1 = (Y1, Y2; . . . , Yn)′ follows the n-dimensional multivariate nor-

mal distribution with expectation µn×1 and variance-covariance matrix Σn×n,Nn(µ,Σ),

if Y has (joint) density

f(y|µ,Σ) =
1√

(2π)n
|Σ|−1/2

e−
1
2 (y−µ)′Σ(y−µ).

An alternative definition for normal distribution is obtained by defining that Y ∼
Nn(µ,Σ) if t′Y ∼ N(t′µ, t′Σt) with any t ∈ <. If Σ is a diagonal matrix, then the

result that the sum of independent normal variates are also normally distributed can be

proved through appropriate selection of t. The marginal distributions of a multinormal

distribution are univariate normal distributions. Furthermore, the correlation between

component variables is always linear. This reults in that in prediction, the Best Linear

Prediction is always also the Best Predictor.

Lognormal distribution

If lnX is normally distributed with mean µ and variance σ2, then X is said to be log-

normally distributed. The pdf of lognormal distribution is obtained straightforwardly
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Figure 1.6: Illustration of Example 1.26.
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using (1.5) with normal distribution

fX(x) =
1√

2πσ2

e−(log(x)−µ)2/(2σ2)

x
0 ≤ x <∞

The expectation and variance are EX = eµ+σ2/2 and varX = e2(µ+σ2
.

In many forestry applications, the response to be modeled does not express a nor-

mal distribution. A very common strategy for those cases is to take a logarithmic

transformation of the response, and assume the residuals to be normally distributed.

This implies that the original response is assumed to be lognormally distributed. The

predictions from such a model are unbiased in the logarithmic scale. However, in the

back-transformed scale, the predictions are downward biased, due to that for lognor-

mal X , EX = eµ+σ2/2, not EX = eµ. If the normality of residuals holds, a suitable

strategy for correction of bias is to add half of the residual variance to the logarithmic

predictions before applying the exponential transformation to get unbiased predictions

in the original scale. However, this may not be a good strategy if normality of residuals

does not hold. An alternative has been presented in (Lappi et al. 2006, p. 103 – 105).

Example 1.11 demonstrated the relationship of normal and lognormal distribution.

For making computations with lognormal distribution in R, the standard R includes

functions dlnorm, plnorm, qlnorm and rlnorm.

Weibull distribution

The (two-parameter) Weibull(α, β) distribution has distribution function

F (x|α, β) = 1− exp
{
−
(
x

β

)α}
,

and density

f(x|α, β) =
α

βα
xα−1e−(x/β)α

,

where α and β are the shape and scale parameters, respectively. The expectation and

variance are EX = βΓ(1 + 1
α ) and varX = β2

[
Γ(1 + 2

α )− Γ2(1 + frac1α)
]
.

The Weibull has been used for modeling failure time data. A special case of Weibull

distribution is obtained with α = 1, called the Exponential(β) distribution. The ex-

ponential distribution is used for modeling lifetimes. The population distribution of

Example 1.26 was generated using the exponential distribution with β = 2. In forestry,

the Weibull distribution has been used for modeling distributions of tree DBH since

the paper of Bailey and Dell (1973). Also a three-parameter version with an additional

parameter for location has been used. The reason for the popularity of Weibull distri-

bution its flexibility with only two parameters. In addition, it has a closed form solution

for the cdf, which eases the computation of diameter class frequencies. In particular,

there are no theoretical reasons why Weibull should be favored over other alternatives.
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R has function dweibull, pweibull, qweibull and rweibull for com-

putations with Weibull distribution

Other distributions used in forestry

In addition to the Weibull distribution, many other distributions have been used for

modeling tree size within a plot or stand. These distributions include include the beta,

Jonson’s SB and the logit-logistic distribution. The beta(p, q) distribution has density

f(x|α, β) =
1

B(p, q)
xα−1(1− x)beta−1

for a ≤ x ≤ b and p, q > 0. The statistical literature usually expresses the beta-

distribution in a two-parameter form, which is obtained from the above expression by

setting a = 0 and b = 1.

f(x|p, q) =
1

B(p, q)
xp−1(1− x)q−1

The expectation and variance of this constrained form are EX = p
p+q and varX =

pq
(p+q)2(p+q+1) . The beta function can be defined through gamma function B(p, q) =
Γ(p)Γ(q)
Γ(p+q) . In forestry, the beta distribution has been used in a form where it has been

bounded between minimum and maximum diameter instead of constants 0 and 1. In

such applications, also the minimum and maximum diameters are treated as parameters

rather than interpreting them as fixed constants, resulting in that the distribution has a

total of four parameters.

The density of Jonsons SB(δ, γ, λ, ξ) distribution using notations of Siipilehto (1999)

is

f(x|δ, γ, λ, ξ) =
δ√
2π

λ

(ξ + λ− x)(x− ξ)
e−

1
2 [γ+δ ln( x−ξ

ξ+λ−x )]2 .

where ξ is the location parameter, λ the scale parameter, and δ and γ are the shape

parameters affecting in kurtosis and asymmetry of the distribution, respectively.

The logit-logistic distribution (Tadikamalla et al. 1982, Wang and Rennolls 2005)

can represent larger variation of skewness-kurtosis combinations than several other

distributions including Weibull, beta and Johnsons SB distribution. In contrast to beta

and SB, it also has a closed-form expression for cdf. The p.d.f. and density of the

logit-logistic(ψ, λ, φ, σ) distribution between the minimum and maximum diameters ψ

and λ are

F (x|ψ, λ, φ, σ) =
1

1 + exp
(
φ
σ

)(
x−ψ
λ−x

)− 1
σ

f(x|ψ, λ, φ, σ) =
λ− ψ

σ(x− ψ)(λ− x)
1

exp
(
−φ
σ

)(
x−ψ
λ−x

) 1
σ

+ exp
(
φ
σ

)(
x−ψ
λ−x

)− 1
σ

+ 2
.
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The SB distribution is formulated by assuming that logit-transformation of x that

is scaled to range [0, 1], z = logit(x−ξλ ) = logit(y) = ln
(

y
1−y

)
follows the nor-

mal distribution with µ = −γ
δ and σ2 = 1−γ

δ2 . Thus, it could be called logit-normal

distribution, by an analogy to the lognormal distribution. Correspondingly, the logit-

logistic distribution is obtained by a similar approach, assuming that the logit follows

the logistic distribution instead of the normal distribution.

Exponential family

One important group of distributions is the exponential family of distributions. It in-

cludes those distributions whose density or pmf can be expressed as

f(x|θ) = h(x)c(theta) exp

(
k∑
i=1

wi(θ)ti(x)

)
, (1.37)

where h(x) ≥ 0, c(θ) ≥ 0, t1, . . . , tk are real-valued functions of x that do not depend

on θ, and w1, . . . , wk are real-valued functions of θ that do not depend on x. The

exponential family is important in that the expectations, variances and covariances of

the random variables, as well as the maximum likelihood estimators for the parameter

vector θ can be expressed in a form that eases the computations. Furthermore, the ML

estimators have certain desired properties. For further details, see Casella and Berger

(2002). For these reasons, applications of generalized linear models and generalized

linear mixed models, which are strongly based on ML theory, have been developed for

the distributions belonging to the exponential family. Of the distributions presented in

this paper, the binomial, multinomial, negative binomial, Poisson, normal, lognormal,

and beta (with fixed a and b) distributions belong to the exponential family.

Example 1.27 The lognormal distribution can be expressed as

fX(x) =
1√

2πσ2

e−(ln(x)−µ)2/(2σ2)

x

=
1
x

1√
2πσ2

e−
1

2σ2 ln(x)2+ µ

σ2 ln(x)− µ2

2σ2

By defining h(x) = 1/x, c(θ) = 1/
√

2πσ2, w1(θ) = −1/(2σ2), w2(θ) = µ/σ2,

w3(θ) = −µ2/(2σ2), t1(x) = ln(x)2, t2(x) = ln(x), and t3(x) = 1 we see that the

lognormal density is of form 1.37.

R library MASS has function mvrnorm for generating multivariate normal random

numbers.
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1.4.3 Distributions of important transformations of a standard Nor-
mal variate

χ2 distribution

If Z follows the standard normal distribution N(0, 1), then the sum of squares Y =∑p
i=1 Z

2
i follows the χ2(p) distribution with p degrees of freedom. It has density

f(x|p) =
1

Γ(p/2)2p/2
xp/2−1e−x/2 0 ≤ x <∞, p = 1, 2, . . . ,

where Γ(α) = ∞
0 tα−1 e−tdt is the gamma function that needs to be evaluated numeri-

cally. The expected value and variance of χ2(p) distribution are p and 2p, respectively.

The expectation results directly from that

E(Z) = E

(
p∑
i=1

Z2
i

)

=
p∑
i=1

E
(
Z2
i

)
=

p∑
i=1

(var(Z) + E(Zi)2)

= p(1 + 0) = p

Chi square distribution is used in construction of tests for the residual sum of

squares for a regression model with normally distributed residuals. R has functions

dchisc, pchisc, rchisc and qchisc for different computations with the χ2-

distribution. There is also function gamma for evaluating the gamma function.

Students t-distribution

If Z ∼ N(0, 1) and u ∼ χ2(n), then the ratio v = z√
u/n

follows the Students t-

distribution, t(n), with n 4 degrees of freedom. The density of students t-distribution

is

f(x|n) =
Γ(n+1

2 )
Γ(n2 )

1√
nπ

1
(1 + x2

n )
1
2 (n+1)

−∞ < x <∞, n = 1, 2, . . .

The mean and variance are E(X) = 0 for (n > 1) and var(X) = n
n−2 for (n > 2).

The t-distribution was originally developed for testing if the mean of a sample of

size n from a normally distributed population significantly differs from a fixed mean.

The Students t-distribution is utilized instead of the normal because the variance is esti-

mated from a sample, thus being a random variable with χ2 distribution. The density is

bell-shaped, and symmetric as normal distribution is too, but it is wider than the stan-

dard normal distribution. However, as n gets large, the t-distribution approaches the
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Figure 1.7: The 0.975th quantile is needed for constructing two-sided 95% confidence
intervals for means. The horizontal line at 1.96 level shows the 0.975th quantile of nor-
mal distribution, and the decreasing line that of t-distribution as the degrees of freedom
change from 2 to 100.

standard normal distribution. Thus, normal distribution leads to very similar inference

as t distribution with large sample sizes tests on a large sample can be based on normal

distribution (Figure 1.7).

R has functions dt, pt, qt and rt for computations with Student’s t-distribution.

F distribution

Let X and Y be independent random variables that follow the χ2 distribution: X ∼
χ2(m) and Y ∼ χ2(n). As an example, X and Y could be two different sums of

squares. The distribution of ratio F = X/m
Y/n follows the F(m,n) distribution with m

and n degrees of freedom. The density is

f(z|m,n) =
Γ(m+n

2 )
Γ(m2 )Γ(n2 )

(m
n

)m/2 x
1
2m−2

(1 + m
n x)

1
2 (m+n)

0 ≤ z <∞, m, n = 1, 2, . . . .

The mean and variance are E(Z) = n
n−2 for (n > 2) and var(Z) = 2 n

n−2
2m+n−2
m(n−4) for

(n > 4).

The F-distribution is used in testing two regression models against each other. R

has function pf, df, qf and rf for computations with F distribution.

1.5 Fitting distribution functions to data

1.5.1 Maximum likelihood

In developing the distribution theory, the probability of getting a value of random vari-

able between specified values is expressed with a distribution function, that is specified

through parameters. Those parameters are thought of as fixed constants that specify
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the distribution of the random variable in the population we are interested in. In reality,

we observe realizations of random variable, and the interesting question is often “What

values do the parameters of the underlying distribution have”. This leads to change in

the role of parameters and variables.

Treating the distribution function as a function of its parameters for the sample

we have in hands leads to the definition of likelihood. Assume that observations

x = (x1, x2, . . . , xn) have been observed, and the joint distribution function of those

observations is f(x|θ), where vector θ includes the parameters that specify the joint

distribution function. If the observations are independent, the joint pdf is just the prod-

uct of univariate densities: f(x|θ) =
∏n
i=1 f(xi|θ). The likelihood function is the

joint pdf for the fixed x as a function of θ = (θ1, . . . , θk)′

L(θ|x) = f(x|θ) (1.38)

If the components of x are independent, the likelihood becomes

L(θ|x) =
n∏
i=1

f(xi|θ) =
n∏
i=1

f(xi|θ1, θ2, . . . , θk)

The value of likelihood cannot be interpreted as a probability, even though it is

somehow related to it. However, it can be used to compare two parameter values against

each other. If we observe that L(θ1|x) > L(θ2|x), we could say that θ2 is more likely

the value of the parameter of the underlying population than θ2. This deduction leads

to the principle of maximum likelihood in estimating the parameters of an underlying

distribution of an assumed functional form.

As the likelihood itself has no clear meaning except for being a tool for comparing

two estimates, it does not have any effect if we make an increasing transformation to

the likelihood. In many situations, the computations get simpler if we use logarithmic

likelihood instead of the likelihood. The log-likelihood is defined as

l(θ|x) = ln(L(θ|x)) = ln(f(x|θ))

Especially, with independent observations, minimizing the product of densities is equiv-

alent to minimizing the sum of logarithmic densities

l(θ|x) =
n∏
i=1

f(xi|θ) =
n∑
i=1

ln(f(xi|θ1, θ2, . . . , θk))

The maximum likelihood estimator θ̂ = θ̂(x) is the value of θ that maximizes the

likelihood 1.38. If the likelihood function is differentiable with respect to the compo-

nents of θ, then the k likelihood equations are formulated as

∂

∂θi
L(θ|x) = 0 k = 1, . . . , k
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which yields systems of k equations. The solutions for that system of equations gives

candidates of likelihood estimates. Those candidates may be global minima or maxima,

local minima or maxima, or inflection points. Other candidates are at the boundary of

the parameter space. Of these candidates, the maximum likelihood estimate (ML esti-

mate) is the one that gives the global maximum value of likelihood within the parameter

space. The ML estimator is the expression that yields the ML estimate when evaluated

using the data, x.

One important feature of the ML estimator is the invariance property. Let θ̂ be

the MLE of θ, and τ(θ) any function. The invariance means that the MLE of τ(θ) is

τ̂ (θ) = τ
(
θ̂
)

.

There are no guarantee that the ML estimates would be unbiased or best in any

sense. However, with certain distributions, there are results that show they are un-

biased minimum variance estimators. Especially, these hold with distributions of the

exponential family. In addition, if the first and second derivatives of the log-likelihood

exist, and the Fisher information matrix is not zero, the ML estimators are asymptoti-

cally normal, minimum-variance unbiased estimators. The term asymptotically means

that these results are true with large samples, whereas they may be badly violated with

small samples. The asymptotic variance of ML estimate is that defined by the Crao-

Ramer lower bound:

var(θ̂) =
{
−E

[
∂2l(θ|x)
∂θ2

]}−1

where −E
[
∂2l(θ|x)
∂θ

]
is the Fisher information matrix. In applications, the variance is

estimated by replacing θ with ML estimates θ̂.

Example 1.28 Assume that x = x1, x2, . . . , xn are observations from normal dis-

tribution with variance 1 and mean µ. The log likelihood function with respect to

unknown µ is

l(µ|x) =
n∑
i=1

[
ln
(

1√
2π

)
− 1

2
(xi − µ)2+

]

= lnn− n

2
ln(2π)− 1

2

n∑
i=1

(xi − µ)2

Differentiating the log likelihood with respect to µ and setting equal to 0 gives the
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likelihood equation

−1
2

n∑
i=1

2(−1)(xi − µ) = 0

n∑
i=1

xi − nµ = 0

nµ =
n∑
i=1

xi

µ =
1
n

n∑
i=1

xi = x̄

Thus, the sample mean is a candidate for MLE, and the only solution for the ML equa-

tion. To verify that it is maximum, not a minimum, we need to study the second derivate

of the log likelihood, ∂
∂µ l(µ,x) = ∂

∂µ

∑n
i=1 xi−nµ = −n. The second derivative is a

negative constant, so the the first derivative is decreasing for infty < µ < ∞. Thus,

the first derivative has to be positive for µ < x̄ and negative for µ > x̄, which implies

that µ = x̄ is a maximum. Furthermore, since the first derivative is continuous and

unique, it is also a global maximum. Thus, we deduce that being within the domain

of the parameter value, the global maximum x̄ is the ML-estimate for µ. Had we a

restriction for µ to be positive, then the ML estimator would be µ = x̄ if x̄ > 0 and

µ = 0 if x̄ ≤ 0

As shown above, the second derivative called Fishers information is ∂2l(µ|x)
∂µ2 =

−n. Writing this to the Rao-Cramer lower bound gives

var(µ̂) =
1

−E(−n)
= 1/n .

Thus, the standard error of estimate is 1/
√
n. It is a special case of the well-known

standard error of mean σ2/
√
n. Even though we will not show it here, we conclude

by saying that the standard error of ML-estimate for a population with other variance

than 1 would be just σ/
√
n.

Example 1.29 A lazy forester does not much care on exact results, but uses numeri-

cal easy-to-use algorithms always for maximum likelihood estimation instead. Even

though this approach should not be suggested for a true scientist, at least for such a

simple distribution as normal, we do that for demonstration purposes.
Thus, we have the sample from normal distribution below, with known variance of

1.
> library(stats4)
> y10<-c(4.99, 4.42, 5.95, 4.49, 5.75, 3.92, 7.74, 5.77, 4.75, 5.61)
> y20<-c(5.80, 6.00, 5.35, 3.98, 4.99, 5.34, 5.14, 5.36, 3.19, 4.62,
+ 4.57, 3.23, 5.57, 4.18, 4.66, 6.76, 5.83, 4.74, 6.91, 4.44)
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Figure 1.8: The normal likelihood based on the data of 10 observations (upper) and
that based on 20 observations (lower). The vertical lines show the ML estimates.

Next, we define the log likelihoods as the sum over logarithmic densities. The
likelihood is a function of µ. The mle package needs the negative log likelihood, so that
is why we return value −l.

> # define a function giving the negative log likelihood for y10
> nll10<-function(mu) {
+ l<-sum(log(dnorm(y10,mu)))
+ -l
+ }
> # The same function for the larger sample
> nll20<-function(mu) {
+ l<-sum(log(dnorm(y20,mu)))
+ -l
+ }

For demonstration purposes, we plot the likelihoods for both datasets. These plots

are shown in Figure 1.8. We see that the likelihood based on larger dataset is narrower

and has a sharper peak than the likelihood based on the smaller dataset.

> mu<-seq(0,10,0.1)
> plot(mu,-sapply(mu,function(x) nll10(x)),type="l",xlab="mu",ylab="log likelihood")
> lines(mu,-sapply(mu,function(x) nll20(x)),type="l")

The ML estimates are obtained numerically using function mle.

> sol10<-mle(minuslogl=nll10,start=list(mu=0))
> sol20<-mle(minuslogl=nll20,start=list(mu=0))
>
> summary(sol10)
Maximum likelihood estimation

Call:
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mle(minuslogl = nll10, start = list(mu = 0))

Coefficients:
Estimate Std. Error

mu 5.339 0.3162278

-2 log L: 28.99266
>
> summary(sol20)
Maximum likelihood estimation

Call:
mle(minuslogl = nll20, start = list(mu = 0))

Coefficients:
Estimate Std. Error

mu 5.033 0.2236068

-2 log L: 55.47056

> lines(rep(coef(sol10),2),c(-500,0))
> lines(rep(coef(sol20),2),c(-500,0))

We see that the estimates are 5.339 for the smaller data and 5.033 for larger data.

The standard errors are 0.316 and 0.223, respectively. The vertical lines added to the

plot of likelihoods show that they are at the maximums of the respective likelihoods.

The higher sample size leads to more accurate estimates, as indicated by the standard

errors. This can also be seen from the plot of likelihoods: standard errors are inversely

related to the second derivative of the likelihood, and the second derivative is the higher

the more peaked the likelihood is.
Finally, we use the exact results from the previous example to compute the MLE:s.

The estimate is just the sample mean, and standard error is 1/n.

>
> mean(y10)
[1] 5.339
> sqrt(1/10)
[1] 0.3162278
> mean(y20)
[1] 5.033
> sqrt(1/20)
[1] 0.2236068

The numerically obtained estimates and standard errors are the same as the exact

values up to the default reporting accuracy of R.

Casella and Berger (2002) presents a number of other examples on finding ML

estimators for binomial and normal distribution under different assumptions. Below

are two examples on finding ML-estimators in R.

Example 1.30 Assume that tree diameters follow Weibull(α, β) distribution, and an in-

dependent sample of diameters x = (15.1, 17.1, 10.0, 13.5, 16.6, 18.1, 11.0, 13.4, 15.2, 17.1, 15.9, 17.7, 14.4, 13.8, 14.8, 11.9, 13.0, 14.7, 16.5, 11.0)

has been taken from a stand. Find numerically ML-estimates for parameters α and β.

We use R-function mle in package stats4. For this purpose, we need to define a

function that evaluates the negative log likelihood.
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library(stats4)

# the measured diameters in a vector
DBH<-c(15.1, 17.1, 10.0, 13.5, 16.6, 18.1, 11.0, 13.4, 15.2, 17.1,

15.9, 17.7, 14.4, 13.8, 14.8, 11.9, 13.0, 14.7, 16.5, 11.0)

# negative of Weibull log likelihood
nll<-function(shape,scale) {

cat(shape,scale," ")
value<--sum(log(dweibull(DBH,shape,scale)))
cat(value,"\n")
value
}

# save ML-estimate into object ’solution’
solution<-mle(minuslogl=nll,start=list(shape=10,scale=10))
10 10 1806.286
10.001 10 1807.236
9.999 10 1805.337
10 10.001 1804.436
10 9.999 1808.139
-939.2394 1861.296 NaN
-179.8479 380.2591 NaN
-27.96957 84.05182 NaN
2.406085 24.81036 67.82072
2.407085 24.81036 67.82053
2.405085 24.81036 67.8209
2.406085 24.81136 67.8221
2.406085 24.80936 67.81933
...
<part of the output was removed>
...
7.603536 15.50216 44.4477
7.604536 15.50116 44.44770
7.602536 15.50116 44.4477
7.603536 15.50216 44.4477
7.603536 15.50016 44.44771
Warning messages:
1: NaNs produced in: dweibull(x, shape, scale, log)
2: NaNs produced in: dweibull(x, shape, scale, log)
3: NaNs produced in: dweibull(x, shape, scale, log)
>
> # Take the summary and asymptotic variance-covariance matrix
> summary(solution)
Maximum likelihood estimation

Call:
mle(minuslogl = nll, start = list(shape = 10, scale = 10))

Coefficients:
Estimate Std. Error

shape 7.603536 1.3646050
scale 15.502161 0.4802482

-2 log L: 88.8954
> cov2cor(vcov(solution))

shape scale
shape 1.0000000 0.3144117
scale 0.3144117 1.0000000

The above output shows that the ML estimates for shape and scale are α̂ = 7.60

and β̂ = 15.50, with estimation errors of 1.36 and 0.48, respectively. The correlation

of estimation errors is 0.314.

The estimation gave three warnings. To see the causes for these warnings, the

function giving the negative log likelihood was set to print the evaluated values of α

and β, as well as the value of the negative log likelihood onto the screen using function

cat(). We see that for three cases, the Negative likelihood got the value NaN (Not
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a number). This resulted from that the algorithm used in finding estimators tried to

evaluate the likelihood with a negative value of shape parameter. However, the shape

can only be positive, and function dweibull() returns value NaN for negative values

of shape. However, the algorithm did not fail to converge for this problem.
A link function can be used to ensure that only values within the parameter range

would be evaluated. Defining α = exp(θ1) and β = exp(θ2), ensures that α and β are
always positive, just because the exponential function is defined for any real-valued x,
and it gives only values above zero. Thus, we are applying link function τ(θ) = ln(θ)
The invariance property of the MLE implies that such approach should lead to same
point estimates than the previous approach.

nll2<-function(theta1,theta2) {
shape<-exp(theta1)
scale<-exp(theta2)
value<--sum(log(dweibull(DBH,shape,scale)))
cat(shape,scale,value,"\n")
value
}

# save ML-estimate into object ’solution’
solution2<-mle(minuslogl=nll,start=list(theta1=log(10),theta2=log(10)))
10 10 1806.286
10.01001 10 1815.809
9.990005 10 1796.824
10 10.01001 1787.867
10 9.990005 1824.893
0 Inf NaN
0 Inf NaN
1.256009e-164 Inf NaN
...
<part of the output was removed>
...
7.603944 15.53322 44.45
7.603944 15.50218 44.4477
7.611552 15.48669 44.44836
7.596344 15.48669 44.44824
7.603944 15.50218 44.4477
7.603944 15.47121 44.45003
There were 14 warnings (use warnings() to see them)

exp(coef(solution2))
theta1 theta2

7.603944 15.502181

We see that the evaluation still results warnings, because the algorithm evaluates

the likelihood with ultimately high or small positive values. The resulting point esti-

mates are equal to the one of the previous approach up to three significant digits. The

small differences in the estimates arise from the numerical accuracy of the algorithm.

Example 1.31 In Example 1.12, we derived the distribution of canopy height obser-
vations, assuming that the crown shape seen from the side is an ellipsoid centered at
(x0, y0). Assume that we have observed the canopy height at random points within
the crown with sampling density 4 observations per m2 from within a tree crown using
laser scanner. We know that the tree height is necessarily larger than equal to the max-
imum observed height, where the equality corresponds to the improbable situation that
one of the observations has hit the tree top. Assuming that the crown shape can be well
described with the ellipsoid, we want to estimate the crown shape, and especially, the
tree height. We proceed by fitting the density of canopy height observations, by maxi-
mizing a profile likelihood, where one of the parameters is profiled out of the likelihood
using the information on the sampling density. We first reparameterize the density (1.7)
using the maximum crown radius, i.e., the relative radius (as a fragment of total height)
at relative height y0 by defining maxr = y0+ b. Then, based on the assumption about
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circular shape of the cross-sectional crown, the maximum crown radius can be solved
from equation n/4 = π ∗ (h ∗maxr)2 as maxr = 1

h

√
n
4π , where n is the number of

laser observations we have on the tree crown. Thus we can eliminate b from our den-
sity, resulting in that the likelihood has only three parameters to be estimated, namely
h, x0, and y0. The likelihood is defined in the R-code below.

# Read the data
> thistree<-read.table("c:/laurim/biometria/lasertree.txt",header=TRUE)
# save laser heights to x
> x<-thistree$z
# initial guesses for the three parameters
> hinit<-max(x+0.01)
> x0init<-min(x-0.01)/hinit
# the profile likelihood
> minuslogl<-function(h=hinit,x0=x0init,y0=-0.015) {
+ maxr<-sqrt(length(x)/(4*pi))/h
+ -sum(log(pdf.laser(x,maxr-y0,x0,y0,h)))
+ }

The assumed model was fitted to data. Note that we have constraints for the pa-
rameters: hx0 should be less than the lowest laser observation, h should be greater
than the highest laser observation, and y0 should be below zero. These constraints
could be implemented using log links, as we did in an earlier example on Weibull dis-
tribution. However, this time we use constrained optimization in finding the parameter
estimation, by using algorithm L-BFGs-B in estimation. The simple bounds for the
parameters are given using parameters lower and upper. We need to use slightly
lower maximum for x0 than min(x) and a slightly higher minimum for h than max(x),
because equality would lead to infinite profile likelihood. The summary of fit is given
below.

> fit<-mle(minuslogl,method="L-BFGS-B",lower=c(hinit,-Inf,-Inf),upper=c(Inf,x0init,0))
> summary(fit)
Maximum likelihood estimation

Call:
mle(minuslogl = minuslogl, method = "L-BFGS-B", lower = c(hinit,

-Inf, -Inf), upper = c(Inf, x0init, 0))

Coefficients:
Estimate Std. Error

h 15.1564548 0.14582940
x0 0.4385392 0.02250756
y0 -0.1114142 0.09192179

-2 log L: 345.7253
> windows(width=3,height=5)
> maxr<-sqrt(length(x)/(4*pi))/coefs[1]
> par(mfcol=c(2,1),mai=c(0.6,0.5,0.1,0.1),mgp=c(2,0.7,0),cex=0.8)
> hist(x,freq=FALSE,xlim=c(6,16),main=NA,xlab="Height,m")
> coefs<-coef(fit)
> y<-seq(0,16,0.1)
> lines(y,pdf.laser(y,maxr-coefs[3],coefs[2],coefs[3],coefs[1]))
> plot(y,radius.ellipse(y,maxr-coefs[3],coefs[2],coefs[3],coefs[1]),

type="l",xlab="Height,m",ylab="Crown radius, m")

The estimated tree height was 15.16 meters, being 0.17 meters higher than the

maximum of laser observations, 14.99 meters. The standard error of estimate was 0.15

meters. The upper plot of figure 1.9 shows a histogram of the observations and the

fitted distribution. The lower plot shows the corresponding crown shape. The utilized

functions pdf.laser and radius.ellipse were defined in example 1.12.
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Figure 1.9: Illustration of example 1.31
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1.5.2 Other methods

The principle of Maximum likelihood is the best justified approach for finding point

estimates for unknown parameters. However, there are also other methods, that have

been used in forestry, especially in fitting diameter distributions to data. Such methods

are the method of moments, the method of percentiles, and cdf regression.

In the method of moments, the first k moments E(X1), . . . ,E(Xk) of an assumed

distribution function are set equal to the sample moments, and parameters are solved

from the resulting system of k equations. In the case of a two-parameter distribution,

the method of moments gives a distribution having the same expectation and variance

as are the sample estimators.

The method of percentiles is analogous to the method of moments, but it utilizes

sample percentiles, which are set equal to the theoretical quantiles of the assumed

distribution function. In addition to moments and percentiles, also other quantities can

be used for finding equations for a system of k equations. For example, the values

of basal area, mean diameter, and the number of stems could be set equal to those

derived from the assumed distribution. For those equations, analytical solutions do not

usually exist, and the resulting equations need to be solved numerically. Methods based

on percentiles or other stand characteristics are commonly called parameter recovery

methods in the literature of diameter distributions. In some approaches, the number of

equations is higher than k, and a subset of the equations is used for each parameter. In

such case, the solution fulfills all the equations only in a rare special case.

Some forestry studies have used the method of cdf regression to fit an assumed

distribution function to tree diameter data. In that approach, the diameter observations

are ordered, and the ith smallest observation of the sample of size n is interpreted as

i/(n+1)th quantile of the distribution. The estimated values are obtained by fitting the

cdf of the assumed distribution function to the data of diameters and the corresponding

values of the empirical cdf. I cannot see any reason to favor this method over the

theoretically better justified methods, such as the method of maximum likelihood.

The bayesian approach is still one more method of finding estimators. In the

bayesian approach, the parameters are treated as random variables. The prior belief

of the value of a parameter are parameterized using a prior distribution, which is com-

bined with the distribution of the data. This yields a posterior distribution of the pa-

rameter of interest. A point estimate of the parameter could be obtained as the mean

of the posterior distribution. The Posterior distribution can also be used to make more

detailed inference on the parameter of interest, such as computing different confidence

intervals.
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1.6 Linear prediction

The general case from (Lappi et al. 2006).

Assume that a random vector h of length k can be divided into two parts

h =
(

h1

h2

)
where h1 and h2 are random vectors, or scalars in the special case that the length

of random vector is 1. It is assumed that E(h1) = µ1, E(h2) = µ2, var(h1) = V1,

var(h1) = V1, and cov(h,h2) = V12. Using the notation of McCulloch and Searle

(2001, p. 247), this can be written as(
h1

h2

)
∼
[(

µ1

µ2

)
,

(
V1 V12

V ′
12 V2

)]
Assume that we have observed the random vector h2 and want to predict vector h1.

The Best Linear Predictor (BLP) of h1 is

BLP (h1) = ĥ1 = µ1 + V12V
−1
2 (h2 − µ2) (1.39)

with a prediction variance of

var(ĥ1 − h1) = V1 − V12V
−1
2 V ′

12 (1.40)

(McCulloch and Searle 2001, p. 250). This result means that if the expectations and

variance-covariance matrices of two random vectors are known and either one of them

is observed, the other one can be predicted using (1.39). Furthermore, the variance of

the prediction error can be calculated using Equation (1.40).

If h follows the multinormal distribution, i.e.,(
h1

h2

)
∼ Nk

[(
µ1

µ2

)
,

(
V1 V12

V ′
12 V2

)]
,

then BLP is the Best Predictor. This results from that with multivariate normal dis-

tribution, all covariances are linear, implying that no nonlinear predictor can be better

than the best linear one.

In practice, matrices V1, V2, and V12 as well as vectors µ1 and mu2 are unknown,

and will be replaced with their estimates. The resulting predictor is the Estimated Best

Linear Predictor (EBLP).

Example 1.32 Assume that a model system is available for prediction of tree volume

and tree height using tree diameter only. Assuming that the form of the model system

is correct and the parameters do not include errors, such a model system would give

the expected values for height and volume for trees with known diameter. Furthermore,
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the residuals of the model are assumed to have constant variances so that the residual

variance of height would be V2 = 0.52 and that of volume would be V1 = 22, and the

covariance between them is V12 = 0.5.

Assume that a sample tree has been measured for diameter and height, the observed

height being h2 = 14 meters, respectively. The volume model gives the expected

volume as µ′1 = 70 liters, and expected height as µ′2 = 13 meters. In this case, both

vectors are scalars. However, we write them using boldface font in order to avoid

introduction of new notations, and to show that they can just be treated as vectors of

length one. The BLP is

ĥ1 = µ + V1V
−1
12 (h2 − µ2)

= 70 + 0.5× 0.25−1(14− 13)

= 70 + 2 ∗ 1 = 72dm3

Further examples on linear prediction will be given when dealing the linear mixed

models and models systems. With mixed-effects models, the BLP is used to predict

stand effects using observations of the response. For example, we can predict stand

effects of a height-diameter curve using measured heights and diameters from the stand

of interest, resulting into a local models for that particular stand. With models systems,

the BLP could be utilized to carry information from one model to another, as we did in

the above example.

1.7 Exercises

Try to do exercises 1-5, the rest are additional excercises if you have time left.

1. Tree diameter in a stand follows Weibull(8,15) distribution. Stand density is 500

trees per ha. Tree height h depends on tree diameter d according to the Korf

function h(d) = 25 ∗ exp(−3/d).

(a) Plot the distribution function and density of tree diameter.

(b) Compute the expected value and standard deviation of tree diameter and

add a vertical line to the plots of density and distribution function at the

mean diameter. Interpret the standard deviation.

(c) Compute the number of trees with diameter above 18 cm.

(d) Plot the height-diameter curve.

(e) Plot the inverse function of the H-D curve.

(f) Plot the distribution function of tree diameter (FH(h))and the correspond-

ing density (fH(h) = F ′H(h)).
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(g) Numerically compute the mean and standard deviation of tree heights as

follows. Define first R-functions for hfH(h) and h2fH(h). Then use

integrate(fn,lower,upper) for numerically evaluate E(H) =
∫∞
0
hfH(h)dh

and E(H2) =
∫∞
0
h2fH(h)dh. In integrate(fn,lower,upper),

fn is the function to be integrated and lower and upper are the bounds

of integration. Finally, use rule the rule 1.17 to compute the variance.

(h) Dominant trees include 100 tallest trees of a stand. Plot the distibution

function and density of the diameter of dominant trees.

(i) Plot the distibution function and density of the height of dominant trees.

(j) Compute the dominant height, i.e., the mean of dominant trees as the ex-

pected value of the height distribbution of dominant trees.

2. Simulate square 20 by 20 meter sample plot from a forest stand, where the stand

density is 1000 trees per ha, trees are located randomly, and tree diameter follows

Weibull(5, 15) distribution as follows

(a) Generate the realized number of sample trees for the plot from Poisson(λA)

distribution, where λ is stand density and A is the plot area.

(b) Generate x and y coordinates for tree locations from the Uniform distribu-

tion.

(c) Generate tree diameters from the Weibull distribution.

(d) Plot the trees using plot(x,y,cex), where x and y are coordinates and

cex is the size of symbol which is prportional to tree diameter.

(e) Fit Weibull distribution to the simulated data using the method of maximum

likelihood.

3. In a forest stand, tree joint distribution of tree diameter and height is character-

ized with the Multinormal distribution with E
[
D
H

]
=
[

20
18

]
and cov

[
D
H

]
=[

9 3
3 4

]
.

(a) Predict tree heights for a tree with known diameter of 10 cm using BLP.

(b) List the properties of your estimate assuming that the multivariate normal-

ity holds.

(c) Plot the implicitly assumed H-D curve. Hint, predict heights for several

diameters with regular intervals and plot the results.

(d) Write down the mathematical expression of the assumed H-D relationship.
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4. Using equation on equation (1.19), show that covariance is a special case of

variance.

5. Derive the expected value and variance of the uniform distribution.

6. Let Y have the Binomial(n, p) distribution. Using rules (1.15) and (1.24), show

that E(Y ) = np and var(Y ) = np(1− p).

7. Let X have Poisson(λ) distribution. Using (1.11) and (1.17), show that E(X) =

var(X) = λ.

8. Show that if X follows the two-parameter version of beta distribution, then Y =

a+(b− a)X follows the four-parametric version of the beta distribution. Based

on this relationship, derive the expected value and variance of Y .

9. The density of random variable Yr:n, that is, the rth smallest tree in a sample

of size n, from a population with underlying cdf and pdf of FY (y) and fY (y),

respectively, is given by

fr:n(y) =
n!

(r − 1)!(n− r)!
fY (y) [FY (y)]r−1 [1− FY (y)]n−r .

Assume that trees have been sampled from a stand with the percentile-based

diameter distribution of example 1.6?

(a) What is the density of Yr:n?

(b) Compute the experted value of the minimum diameter of a sample of 12

trees, Y1:12.

(c) Compute the variance and standard deviation of Y1:12.

(d) Interpret the computed values for expected value and standard deviation.

10. The joint density of Yr1:n and Yr2:n (r1 < r2), i.e., the r1th smallest and r2th

smallest trees in a sample of size n from a population with underlying cdf and

pdf of FY (y) and fY (y), respectively, is given by

f(y1, y2) =
n!

(n− r2)!(r2 − r1 − 1)!(r1 − 1)
fY (y1)fY (y2)

[FY (y)]r1−1 [FY (y2)− FY (y1)]
r2−r1−1 [1− FY (y)]n−r2 .

Assume that the underlying population distribution is the percentile-based distri-

bution of example 1.6.

(a) Derive the joint density of Yr1:n and Yr2:n.

(b) Derive the conditional density of Y1:12 given that Y2:12 = 10.
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(c) Compute the expected value E(Y1:12Y2:12).

(d) Compute the expected values E(Y1:12), E(Y2:12), E(Y 2
1:12), and E(Y 2

2:12)

using the results from the earlier exercise on a univariate order statistic.

(e) Using the previous results, compute cov(Y1:12Y2:12) and corr(Y1:12Y2:12).

11. Bivariate distribution for diameter distribution at two points in time (the paper

published by xxx in Biometrics).



Chapter 2

Linear model

Linear regression, or the linear model, is maybe the most widely used statistical tool.

It is used to analyze the dependence of variable y, e.g., tree volume, on other variables

x, e.g., tree diameter and height. The terminology of regression modeling depends

much on the field of study, and also on the purpose of the modeling. The different

names used for variable y include terms dependent variable, response variable, the

regressand, the measured variable, the responding variable, the explained variable, and

the outcome variable. For variable x, terms independent variable, predictor variable,

regressor, controlled variable, manipulated variable, and explanatory variable are used.

In the basic regression analysis, it is often assumed that x-variables are set by the

researcher, and the effect of changes in x on the value of y is analyzed. However, in

many cases, the values of x cannot be controlled. This does not cause problems into

the analysis, but the inference on the model is valid for the dataset used in analysis.

In the case of single predictor regression, we will have one response and one predic-

tor. For example, we may predict tree height on tree diameter. In multiple regression,

the number of predictors may is higher than 1. For example, Standing tree volume may

be predicted on tree diameter, height and upper diameter. In most cases, the number of

responses is one. However, we may also have several responses, for example, we may

wish to simultaneously predict tree volume and height. In this situation, a system of

models is fitted. Those situations are handled in chapter 5.

The regression may be either nonlinear or linear. In this context, the linearity means

that variable y, or any transformation of it, is linear in predictors x or any transforma-

tions of it. Thus, the linear regression applies in all instances where the relationship

between x1, . . . , xn and y can be written as

fy(y) = β0 + β1f1(x1) + β2f2(x1)+, . . . ,+βnfn(xn) ,

where β1, . . . , βn are parameters to be estimated from the data.

51
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In nonlinear regression, the relationship may be expressed with any function

y = f(x1, . . . , xn, β1, . . . , βm) .

For example, we could assume relationship

y = β0x
β1 ,

between x and y, which is no more linear. However, the relationship could be linearized

by taking logarithms from both sides to get

ln y = lnβ0 + β1 ln(x) .

The above example shows a very common way to linearize nonlinear relationships,

namely taking logarithms. However, in many cases the relationship cannot be lin-

earized. The widely used and flexible Champman-Richards function (Richards 1959)

is an example of such a function

y = β1

(
1− e−β2x

)β3
.

2.1 Single-predictor regression

2.1.1 Model formulation

In single predictor regression, we have one response and one predictor. Assume that

variables yi and xi are measured for individuals i, i = 1, . . . , n. The simple linear

regression model for the ith individual can be written as

yi = b0 + b1xi + ei . (2.1)

In equation (2.1), we assume that variable yi comprises of two parts: of a systematic

part that depends on the values of xi through the assumed relationship, and of a random

part caller residual or random error. Parameters b0 and b1 are parameters of the assumed

regression model, which specify the systematic dependence on xi, and ei is the residual

of individual i. Part b0 + b1xi expresses the average or mean relationship between

variables x and y. It can also be interpreted as the expected value of y for an individual

with given value of x. The residual ei in turn expresses how much the value of y of the

particular tree i differs from that expected value or mean in the horizontal direction. It

is usually assumed that E(ei = 0, var(ei) = σ2, and cov(ei, ej) = 0 when i 6= j.

Example 2.1 20 Trees were measured for diameter and height in a stand. The obser-

vations have been printed in table 2.1 plotted in figure 2.1. It seems a linear model of

form

hi = b0 + b1di + ei
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Table 2.1: Twenty measured diameter-height pairs from a Scots pine - Norway spruce
mixture.

d h pl d h pl d h pl d h pl
31 22.8 1 28.3 19.7 1 26.9 21.3 2 26.2 19.3 1

29.9 21.6 2 28.7 21.3 1 25.7 20.7 2 25.3 20.3 1
30 20.5 2 27.9 21.3 1 26.3 19.3 1 25.5 21 2

29.6 22.5 1 27.6 20.8 2 26.2 20.2 2 25.6 19.2 1
29.4 20.4 1 27.3 24 2 25.4 20.5 2 24.3 19.3 2
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Figure 2.1: Twenty measured diameter-height pairs from a Scots pine - Norway spruce
mixture.
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could be a good starting point for modeling the height-diameter relationship in the

example stand.

Example 2.2 A total of 200 Scots pine trees were measured for diameter and height
from 44 plots in North Carelia. The data were read to R using

> hddata<-read.table("c:/laurim/biometria/hddata.txt",header=TRUE)

To see if the relationship between diameter and height is linear, we start by plotting
the data.

> windows(width=3,height=6)
> par(mfcol=c(2,1),mai=c(0.6,0.5,0.1,0.1),mgp=c(2,0.7,0),cex=0.8)
> plot(hddata$d,hddata$h)

The plot shows slight curvature. We try to linearize the relationship by making
transformations to diameter. After some trials, we find that the relationship between
ln(d+ 10) and h is quite close to linear.

> plot(log(hddata$d+10),hddata$h)

Thus, a good starting point for our modeling purposes is the following simple linear

model

hi = b0 + b1 ln(di + 10) + ei

where hi, di, and ei are the height, diameter and residual of tree i, i = 1, . . . , 200. The

residual is assumed to have expectation of zero, i.e., the average difference between

observed height and the fitted model is assumed to be zero. Furthermore, it is assumed

that the variance of true height around the regression line is constant, i.e., it does not

vary according to the predicted height.

2.1.2 Estimation with least squares

In the method of least squares, values for parameter vector b are estimated by searching

the value that minimize the sum of squared residuals. With single predictor regression

(2.1), the sum of squared residuals can be written as

n∑
i=1

(yi − b0 − b1xi)

The values of b0 and b1 that minimize the squared residuals is found at a point where

the first derivative is zero, given that that point is the global minimum. Differentiating

the sum of squared residuals with respect to b0 and b1 (we believe that they are global

minimums), and setting the derivates equal to 0 gives equations

−2
n∑
i=1

yi + 2nb0 − 2b1
n∑
i=1

xi = 0

n∑
i=1

2yixi − 2b0
n∑
i=1

xi − 2b1
n∑
i=1

x2
i = 0
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Figure 2.2: The plot of tree height against diameter in the data of example 2.2.

Solving the upper equation for b0 yields b0 = ȳ − b1x̄. Writing the solution into the

latter equation and solving for b1 yields b1 =
1
n

∑
i xi

∑
i yi−

∑
i xy

1
n (∑

i xi)2−
∑

i x
2

.

The residual variance is estimated by

σ̂2 =
RSS

n− 2
, (2.2)

where RSS =
∑
i (yi − b̂0 − b̂1xi)2 is the residual sum of squares.

Example 2.3 In example 2.5, the required sums are
∑
i di = 547.1,

∑
i hi = 416,∑

i dihi = 11403.52, and
∑
i d

2
i = 15035.59. The OLS estimates for regression

coefficients become

b̂1 =
1
n

∑
i di
∑
i hi −

∑
i dihi

1
n (
∑
i di)

2 −
∑
i d

2

=
1/20× 547.1× 416− 11403.52

1/20× 547.12 − 15035.59
= 0.3421870

and

b̂0 = h̄− b1d̄

= 1/20× 416− 0.3421870× 1/20× 547.1 = 11.43947

The estimate of residual variance is

σ̂2 =
∑
i (hi − b̂0 − b̂1di)2

n− 2
= 1.215681

The above computations were carried out with the following code:
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> sumd<-sum(onestand$d)
> sumh<-sum(onestand$h)
> sumdh<-sum(onestand$d*onestand$h)
> sumd2<-sum(onestand$dˆ2)
> n<-dim(onestand)[1]
> b1<-(1/n*sumd*sumh-sumdh)/(1/n*sumdˆ2-sumd2)
> b1
[1] 0.3421870
> b0<-sumh/n-b1*sumd/n
> b0
[1] 11.43947
> RSS<-sum((onestand$h-b0-b1*onestand$d)ˆ2)
> sigma2<-RSS/(n-2)
> sigma2
[1] 1.215681
> sqrt(sigma2)
[1] 1.102579

The same results are obtained using the R-function lm

fm1<-lm(h˜d,data=onestand)
fm1

A little bit more information on the model is obtained using function summary()

> summary(fm1)

Call:
lm(formula = h ˜ d, data = onestand)

Residuals:
Min 1Q Median 3Q Max

-1.42337 -1.02454 -0.01555 0.51366 3.21882

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.4395 3.6219 3.158 0.00544 **
d 0.3422 0.1321 2.590 0.01847 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.103 on 18 degrees of freedom
Multiple R-squared: 0.2716, Adjusted R-squared: 0.2311
F-statistic: 6.71 on 1 and 18 DF, p-value: 0.01847

At this stage, we just note that our manually computed figures agree with those
given by function lm. The fitted line can be added to the plot using

> abline(b0,b1) # try also abline(fm1)

Furthermore, we illustrate the residuals using vertical dashed lines

> fn1<-function(x) lines(rep(onestand$d[x],2),c(onestand$h[x],predict(fm1)[x]),lty="dashed")
> sapply(1:dim(onestand)[1],fn1)

2.2 Multiple regression

2.2.1 Model formulation

The situation does not change very much from that of the previous subsection if we

have more than one predictor. The linear model is

yi = b0 + b1x1i + b2x2i, . . . ,+bpxpi + ei . (2.3)
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Figure 2.3: The fitted regression line and the residuals of the twenty measured
diameter-height pairs from a Scots pine - Norway spruce mixture.

Now coefficicients b0, b1, . . . , bp specify the expected dependence of yi on the pre-

dictors x1i, . . . , xpi, or the systematic part of the model. Again, the residual ei in

expresses how much the value of y of the particular tree i differs from that expected

value or mean in the horizontal direction, the assumptions are the same as with single-

predictor regression, namely that E(ei = 0, var(ei) = σ2, and cov(ei, ej) = 0 when

i 6= j. Note that no specific distribution is assumed for ei at this stage. Assumptions

var(ei) = σ2 and cov(ei, ej) = 0 can be relaxed so, that a specific structure may be

assumed for variances and covariances. These issues are discussed later in chapters 3

and 2.1.2

Example 2.4 As an alternative to model of example 2.2, one could assume that tree

height depends not only on tree diameter, but on some properties of the stand, such as

the basal area, basal area median diameter, and geographical northern co-ordinate of

the plot location. The assumed model would be

hi = b0 + b1 ln(di + 10) + b2Gi + b3DGMi + b4Y Ki + ei

where Gi, DGMi, and Y Ki are the basal area (m3/ha), basal area median diame-

ter (cm,), and the geographical north co-ordinate of i, i = 1, . . . , 200. A practical

difference to the single-predictor regression is immediately noticed, namely that the

predictions are represented by points that do not form a line in the h − d-plane. Plot

2.4 shows the observed heights with open circles, and the fitted values of a multiple

regression model with black triangles.
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Figure 2.4: The plot of tree height against diameter in the data of example 2.4.

According to the type of predictors, the linear model can be called regression

model, analysis of variance model, and analysis of covariance model. In the regression
analysis model, predictors are usually continuous random variables, such as tree diam-

eter, or altitude above sea level. In variance analysis (ANOVA) model, the predictors

are so called dummy variables or indicator variables, which only can get values 0 and

1, indicating either presence or absence of a certain property or feature. They may in-

dicate, for example, the origin of a seedling (e.g., 1 means planted and 0 natural), or if

a certain treatment was applied or not. For example, value 1 may indicate the new sil-

vicultural treatment and value 0 the old treatment. Furthermore, indicator variables can

be used to parameterize categorical variables, such as site fertility class, to a regression

model. Classifications with more than two classes require several dummy variables.

The covariance analysis model is a combination of these two models, including both

continuous variables and indicator variables as predictors.

It is often convenient to write the linear model (2.3) in a matrix form. In the matrix

form, all observations of y are written into a column vector yn×1, the predictors into

matrix Xn×(p+1), the coefficients into column vector bp×1, and the residuals into a

column vector en×1. The model becomes


y1
y2
...
yn

 =


1 x11 x21 · · · xp1
1 x12 x22 · · · xp2
...

...
...

. . .
...

1 x1n x2n · · · xpn




b1
b2
...
bp

+


e1
e2
...
en


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or simply

y = Xb + e (2.4)

Matrix X is called the design matrix. Note that the first column of the design

matrix has ones. This is to include the constatnt to the model, i.e, the constant of (2.3)

can be written as bi × 1 The assumptions about the residual vector e can be stated as

E(e) = 0

var(e) = σ2I

Furthermore, because the fixed part does not include randomness (design matrixX and

coefficients b are thought as fixed), these assumptions imply that

E(y) = Xb

var(y) = var(e) = σ2I

Example 2.5 On one sample plot, 20 trees were measured for diameter and height.

The data are shown in table 2.1. The simple linear model of Example 2.2 can be

presented in a matrix form as

h = Xb + e ,

where

h =



22.8
21.6
20.5
22.5
20.4
19.7
21.3
21.3
20.8
24.0
21.3
20.7
19.3
20.2
20.5
19.3
20.3
21.0
19.2
19.3



X =



1 31
1 29.9
1 30
1 29.6
1 29.4
1 28.3
1 28.7
1 27.9
1 27.6
1 27.3
1 26.9
1 25.7
1 26.3
1 26.2
1 25.4
1 26.2
1 25.3
1 25.5
1 25.6
1 24.3



b =
(
b0
b1

)
e =



e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12
e13
e14
e15
e16
e17
e18
e19
e20



,

2.2.2 Estimation with least squares

Solution of the model (2.3) becomes easily tedious to compute, because the number of

equations needed equals to the number of parameters in b. That is why linear models
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and the least squares solutions are usually presented in the matrix form. The sum of

squared residuals is expressed in the matrix form as (y − Xb)′(y − Xb). The OLS

estimator of b = (b0, b1)′ is in the matrix form

b̂ = (X′X)−1X′y

It can be shown that the least squares estimator is unbiased and has variance-covariance

matrix σ2X′X−1:

E(b̂) = E
[
(X′X)−1X′y

]
= (X′X)−1X′Ey

= (X′X)−1X′Xb

= b

cov(b̂) = cov
[
(X′X)−1X′y

]
= (X′X)−1X′ (covy) X(X′X)−1

= σ2I
[
(X′X)−1X′X(X′X)−1

]
= σ2(X′X)−1

For estimation of residual variance, let us define matrix H as

H = X(X′X)−1X′

An unbiased estimator for the residual variance is

σ̂2 =
y′(I − H)y

n− p
, (2.5)

where p is the number of fixed parameters in the model, i.e., the length of vector b.

Note that we did not need any assumption on the distribution of residuals for these

proofs. It can be shown that the LS estimator is the Best Linear Unbiased Estimator of

the parameters of model (2.4). This means that from among estimators that are unbi-

ased and linear with respect to observations, (i.e., are of form ay), the OLS-estimator

has the smallest variance. However, this holds only when the assumptions (constant

variance and no correlation) on residuals hold.

Example 2.6 Using X and h as defined in example 2.5, the OLS estimate for b is

b̂ = (X′X)−1X′h

=
(

11.4394735
0.3421870

)
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The residual variance is

σ̂2 =
y′(I − H)y

n− p
= 1.215681

The R-code for Example 2.6

> onestand<-read.table("c:/laurim/biometria/onestand.txt",header=TRUE)
> X<-cbind(1,onestand$d)
> h<-onestand$h
> b<-solve(t(X)%*%X)%*%t(X)%*%h
> H<-X%*%solve(t(X)%*%X)%*%t(X)
> I<-diag(rep(1,20))
> sigma2<-t(h)%*%(I-H)%*%h/18
> b

[,1]
[1,] 11.4394735
[2,] 0.3421870
> sigma2

[,1]
[1,] 1.215681

The estimates are, again, exactly the same as those obtained in example 2.3

Example 2.7 Let us fit the model of example 2.2 to the data of 200 height-diameter

pairs from different stands. To study the trends in residuals, we plot the mean of vari-

able y as a function of x in a given number of classes. In addition, we add two vertical,

centered at the class mean. The first one is proportional to the class-specific standard

deviation (multiplied by 2× 1.96 to yield a 95% confidence interval based on assump-

tion of normality) at. The second one is proportional to the class-specific standard

errors of means is a similar way. Adding tehse lines to a scatterplot of residuals, gives

a good plot for analyzing the trends in residuals. The lines based on class-specific

standard deviations can be used to analyse if the residuals have constant variance ort

not. The lines based on the standard error of meas can be used to assess if the model

fits well enough over the whole range of predictions.
Function mywhiskers can be used to make such a plot. Using se=TRUE produces

the first version and using se=FALSE produces the second version.

> mywhiskers<-function(x, y, nclass=10, limits=NA, add=FALSE, se=TRUE, main="", xlab="x",
ylab="y", ylim=NA, lwd=1) {

+ away<-is.na(x+y)
+ x<-x[!away]
+ y<-y[!away]
+ if (is.na(limits[1]))
+ limits<-seq(min(x),max(x)+1e-10,length=nclass+1)
+ else
+ nclass=length(limits)-1
+ means<-sapply(1:nclass,function(i) mean(y[x>=limits[i]&x<limits[i+1]]))
+ if (se) {
+ ses<-sapply(1:nclass,function(i) sd(y[x>=limits[i]&x<limits[i+1]])/
+ sqrt(sum(x>=limits[i]&x<limits[i+1])))
+ } else {
+ ses<-sapply(1:nclass,function(i) sd(y[x>=limits[i]&x<limits[i+1]]))
+ }
+ lb<-means-1.96*ses
+ ub<-means+1.96*ses
+ xclass<-1/2*(limits[-1]+limits[-nclass-1])
+ if (add) {
+ points(xclass,means)
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+ } else {
+ if (is.na(ylim[1])) ylim<-c(min(lb),max(ub))
+ plot(xclass,means,ylim=ylim,main=main,xlab=xlab,ylab=ylab,xlim=range(x))
+ }
+ sapply(1:nclass,function(i) lines(xclass[c(i,i)],c(lb[i],ub[i]),lwd=lwd))
+ }

The following code wasused t ofit the model and plot the residuals:

> fm3<-lm(h˜log(d+10),data=hddata)
> fm3

Call:
lm(formula = h ˜ log(d + 10), data = hddata)

Coefficients:
(Intercept) log(d + 10)

-33.78 14.80
> windows()
> plot(predict(fm3),resid(fm3),xlab="Predicted value",ylab="Residual",ylim=c(-8,8))
> mywhiskers(predict(fm3),resid(fm3),se=FALSE,add=TRUE)
> mywhiskers(predict(fm3),resid(fm3),add=TRUE,lwd=3)
> abline(0,0)

All 95% confidence intervals for mean (the thick vertical lines) overlap the the x-

axis (Figure 2.6). This means that the model of form h = b0 + b1 ln(d + 10) wits

rther well to the data. However, the class-specific standard deviations (the thin vertical

lines) indicate increasing variance as a function of prediction.

2.2.3 The design matrix

The design matrix specifies the structure of the model. It is usually a big matrix: the

number of rows equals to the number of observations, and it has at least as many

columns than there are predictors in your model. Some important points about the

structure and construction of the design matrix are given here. Statistical packages such

as R, SPSS or SAS automatically construct the design matrix, but it is still important

for a modeler to understand what is done in the computer memory.

Continuous predictors are included in the original form, as we did in example 2.5.

Including factors is a little different. Factors having only two levels are included as one

dummy variable, which gets values 0 or 1. The coefficient of that variable expresses

the difference of the level coded as 1 to the level coded as 0. Factors having p > 2

levels are coded as p − 1 dummy variables, each of them indicating if a specific level

was present (dummy=1) or not (dummy=0). One level is selected as the default or

reference level, which the other levels are compared to. From mathematical point of

view, the selection of default level is unimportant. However, the selection of the default

level affects the interpretation of the coefficients: the coefficients of other levels specify

the difference to the default level. Also the t-tests on the individual coefficients test the

hypothesis “do this level significantly differ from the default level’.’ That is why the

level can, and should be selected so that the interpretation makes sense.
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Example 2.8 In example 2.5, half of the trees were Scots pines, the rest 10 sample

trees being Norway spruces. In addition to tree diameter, we could include a dummy

variable into our model, indicating whether the tree is spruce or pine. There is no good

reason to select which of the tree species would be coded as 0 (the default level). We

just select Scots pine as the default.

The model would be

hi = b0 + b1di + b2SPRUCEi + ei (2.6)

where SPRUCEi is an indicator variable getting value 1 when tree i is spruce, and 0

elsewhere. The design matrix and parameter vector b become

X =



1 31 0
1 29.9 1
1 30 1
1 29.6 0
1 29.4 0
1 28.3 0
1 28.7 0
1 27.9 0
1 27.6 1
1 27.3 1
1 26.9 1
1 25.7 1
1 26.3 0
1 26.2 1
1 25.4 1
1 26.2 0
1 25.3 0
1 25.5 1
1 25.6 0
1 24.3 1



b =

 b0
b1
b2



The parameter estimates are obtained as

> X<-cbind(1,onestand$d,onestand$pl-1)
> h<-onestand$h
> b<-solve(t(X)%*%X)%*%t(X)%*%h
> H<-X%*%solve(t(X)%*%X)%*%t(X)
> I<-diag(rep(1,20))
> sigma2<-t(h)%*%(I-H)%*%h/18
> b

[,1]
[1,] 9.6564516
[2,] 0.3935878
[3,] 0.7539084
> sigma2

[,1]
[1,] 1.068024

or using

> onestand$pl<-as.factor(onestand$pl)
> fm2<-lm(h˜d+as.factor(pl),data=onestand)
> summary(fm2)
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Figure 2.5: Observations of the sample stand (circles for pine and triangles for spruce),
and the fitted line of model (2.6) for spruce (upper) and pine (lower).

Call:
lm(formula = h ˜ d + as.factor(pl), data = onestand)

Residuals:
Min 1Q Median 3Q Max

-1.7180 -0.6700 -0.1904 0.5805 2.8447

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.6565 3.6817 2.623 0.01782 *
d 0.3936 0.1317 2.988 0.00827 **
as.factor(pl)2 0.7539 0.4918 1.533 0.14366
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.063 on 17 degrees of freedom
Multiple R-squared: 0.36, Adjusted R-squared: 0.2847
F-statistic: 4.782 on 2 and 17 DF, p-value: 0.02251

Note that we used function as.factor to coerce the tree species to a factor. The
output shows that tree species 1 was set as the default level, as we did also with our
design matrix.

> plot(onestand$d,onestand$h,pch=as.numeric(onestand$pl),xlab="Diameter, cm",ylab="Height, m")
> abline(coef(fm2)[1],coef(fm2)[2])
> abline(sum(coef(fm2)[c(1,3)]),coef(fm2)[2])

The above design matrix specified a model where the dependence of height on

diameter is similar for both tree species, except for a horizontal shift in the level of the

model. Thus, the assumed model for Scots pine is hi = b0 + b1di + ei. For Norway

spruce, the assumed model is hi = b0 + b2 + b1di + ei. Those are illustrated in plot

2.5.
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One could also be interested in fitting a models where also the slope varies between

the tree species. Such a model is obtained by including an interaction term into the

model, as demonstrated in the following example.

Example 2.9 Assume that we want to have also different slopes for Scots pine and

Norway spruce by including an interaction term into our model. Such a model is

defined as

hi = b0 + b1di + b2SPRUCEi + b3 ∗ SPRUCEidi + ei

The design matrix corresponding to this model is defined as

X =



1 31 0 0
1 29.9 1 29.9
1 30 1 30
1 29.6 0 0
1 29.4 0 0
1 28.3 0 0
1 28.7 0 0
1 27.9 0 0
1 27.6 1 27.6
1 27.3 1 27.3
1 26.9 1 26.9
1 25.7 1 25.7
1 26.3 0 0
1 26.2 1 26.2
1 25.4 1 25.4
1 26.2 0 0
1 25.3 0 0
1 25.5 1 25.5
1 25.6 0 0
1 24.3 1 24.3



b =


b0
b1
b2
b3



The assumed model for Scots pine is now hi = b0 + b1di + ei, and that for Norway

spruce is hi = b0+b2+(b1+b3)di+ei. Thus, we actually assume separate models for

the tree species. An equivalent model would be obtained by splitting the data according

to tree species, and fitting separate models for both sub-dataset.

Another important question about the design matrix is if the constant is included

or not. Usually the constant is included, i.e., the first column of the design matrix

consists of ones. However, sometimes the phenomenon to be modeled itself is such

that constant does not have a practical meaning, or the model without constant would

be more realistic. In such cases, the constant can be left out of the model.

Example 2.10 As diameters have been measured at breast height, it could be realistic

to assume that height for diameter d = 0 is 1.3. Thus, a realistic assumption would be
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to assume the constant to be 1.3. Such an assumption can be implemented by subtract-

ing the value 1.3 meters from the measured heights, and assuming that the constant b0
is zero in the resulting model

di − 1.3 = b0 + b1di + ei.

Vectors and matrices h, X , and b become

h =



21.5
20.3
19.2
21.2
19.1
18.4
20
20

19.5
22.7
20

19.4
18

18.9
19.2
18
19

19.7
17.9
18



X =



31
29.9
30

29.6
29.4
28.3
28.7
27.9
27.6
27.3
26.9
25.7
26.3
26.2
25.4
26.2
25.3
25.5
25.6
24.3



b =
(
b1
)

2.2.4 Least squares for LM with a general residual variance struc-
ture

If the assumptions on the variance and correlation of error terms do not hold, OLS

estimation is still unbiased. However, the OLS estimator is no more the minimum-

variance-estimator. With such data, Generalized least squares estimation can be used.

In GLS, the variance among residuals may vary, end residuals may also be correlated.

These assumptions are parameterized into the variance-covariance matrix of residuals,

which is then used to obtain GLS estimates for the parameters of the linear model. A

WLS estimator is also sometimes used. It is a special case of GLS, where residuals are

assumed to be uncorrelated, but the variance is assumed to vary among observations.

The different methods are consistent so, that GLS with zero correlations leads to WLS.

Furthermore, WLS with constant variance yields OLS. We will go directly to GLS

principle, is just a simple special case of the more general GLS approach.

For presentation of the GLS estimation, we assume that the response y depends on
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the design matrix X in the similar fashion than before.

y = Xb + e

The model differs from model (2.4) in the assumptions about the residual vector. We

assume that

E(e) = 0

var(e) = σ2V ,

where V is any symmetric positive definite matrix.

We are still assuming that design matrix X and coefficients b are fixed, and these

assumptions imply that the following results still hold

E(y) = Xb

var(y) = var(e) = σ2I

An interesting special case of GLS results if we know only means of y in p classes

of variable x, and classes have unequal number of observations. Assumption of con-

stant variance for raw unobserved data implies that classes have unequal variances,

variance of class i being σ2/ni. The variance-covariance matrix of the classified data

is then σ2W , where

W =


1/n1 0 . . . 0
0 1/n2 . . . 0
...

...
. . .

...
0 0 . . . 1/np


The OLS estimator generalizes to the case. The Estimator that properly accounts

for the relaxed assumptions on the residual is the estimator that minimizes the sum of

squares (y − Xb)′V −1(y − Xb). The Generalized Least Squares (GLS) estimator

is

b̂ = (X′V −1X)−1X′V −1y (2.7)

For model (2.2.4), this is the BLUE, i.e, has the smallest is unbiased and has the small-

est variance.

It can be shown that the GLS estimator is unbiased and has variance-covariance

matrix σ2X′V −1X−1:

E(b̂) = E
[
(X′V −1X)−1X′V −1y

]
= (X′V −1X)−1X′V −1Ey

= (X′V −1X)−1X′V −1Xb

= b



68 CHAPTER 2. LINEAR MODEL

cov(b̂) = cov
[
(X′V −1X)−1X′V −1y

]
= (X′V −1X)−1X′V −1 (covy)

[
(X′V −1X)−1X ′V −1

]′
= σ2

[
(X′V −1X)−1X′V −1V V −1X(X′V −1X)−1

]
= σ2

[
(X′V −1X)−1X′V −1X(X′V −1X)−1

]
= σ2(X′V −1X)−1

For estimation of residual variance, let us define matrix G as

G = X(X′V −1X)−1X′V −1

An unbiased estimator for the residual variance is

σ̂2 =
y′(I − G)′V −1(I − G)y

n− p
, (2.8)

where p is the number of fixed parameters in the model, i.e., the length of vector b.

In R, function lm can be used in fitting OLS and WLS models, i.e., it can be used

for modeling when all off-diagonal elements of matrix V are zeros. For fitting GLS

models with any positive definite V , one alternative is to use function gls in package

nlme.

Example 2.11 In example 2.7, a good form was found for the fixed part of the model,
but the residuals showed an increasing variance as a function of prediction. In order
to make a better assumption on the residual variance, we model the squared residuals
of the OLS model on prediction. The following code plots the squared residuals and
fits a linear model to them.

> plot(predict(fm3),resid(fm3)ˆ2)
> lm.var<-lm(I(resid(fm3)ˆ2)˜predict(fm3)-1)
> lm.var

Call:
lm(formula = I(resid(fm3)ˆ2) ˜ predict(fm3) - 1)

Coefficients:
predict(fm3)

0.4568
> abline(lm.var)

The model of squared residuals has a positive coefficient, implying that the resid-

ual variance is increasing as a function of predicted value. A model assuming a het-

erogeneous residual variance according to the variance model is fitted by using the

weight=1/predict(lm.var) in function lm.

> fm4<-update(fm3,weight=1/predict(lm.var))
> fm4

Call:
lm(formula = h ˜ log(d + 10), data = hddata, weights = 1/predict(lm.var))
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Coefficients:
(Intercept) log(d + 10)

-32.59 14.42

> summary(fm4)$sigma
[1] 0.9774896

The coefficients are slightly different from those obtained using OLS. With weighted
fit, the standardized residuals should be homogeneous, indicating that the assumed
variance function properly takes into account the heteroscedastic variance. Those
residuals are obtained by using type="pearson" in function resid. The plot
of standardized residuals shows that the residuals are not that much heteroscedastic
any more.

> plot(predict(fm4),
+ resid(fm4,type="pearson"),
+ xlab="Predicted value",
+ ylab="Standardized residual")
> mywhiskers(predict(fm4),resid(fm4,type="pearson"),se=FALSE,add=TRUE)
> mywhiskers(predict(fm4),resid(fm4,type="pearson"),add=TRUE,lwd=3)
> abline(0,0)

Even though estimates seldom need to be computed manually using the matrix

equations, it is useful to be able to do it in order to better understand the general ap-

plicability of the GLS-estimator 2.7. Furthermore, it may be sometimes useful to be

able to compute the estimates. For example, it is not always very clearly reported if the

weights needed in a function fitting a wls model should be given as variances or stan-

dard deviations, and if they need to be inverted or not. To test which alternative should

be used, one option is to fit a small model manually, and to test which definitions leads

to the estimates obtained using the function used for model fitting.

Example 2.12 To show that the estimates are based on the estimator 2.7, we fit the
model of example 2.11 manually.

> V<-diag(predict(lm.var))
> X<-cbind(1,log(hddata$d+10))
> y<-hddata$h
> est<-solve(t(X)%*%solve(V)%*%X)%*%t(X)%*%solve(V)%*%y
> est

[,1]
[1,] -32.58795
[2,] 14.42168
> G<-X%*%solve(t(X)%*%solve(V)%*%X)%*%t(X)%*%solve(V)
> I<-diag(rep(1,length(y)))
> sigma2<-1/(dim(X)[1]-dim(X)[2])*(t(y)%*%t(I-G)%*%solve(V)%*%(I-G)%*%y)
> sqrt(sigma2)

[,1]
[1,] 0.9774896

We see that the estimates are exactly equal to those obtained using lm.

Example 2.13 Let us fit the model of example 2.11 using function gls. In gls, we
have several options for the form of the variance function. Using weights=varFixed( x),
where x is a variable of our data, the variance is assumed to depend on the given co-
variate according to var(e) = σ2x. To specify a model where variance depends on
the predicted value, we first save the predicted value into our data, and then use it as a
covariate in the variance function. The numerical values of fixed parameters are very
similar to those of the previous example.
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Figure 2.6: Plot for example 2.11
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Figure 2.7: Plot for example 2.13. The crosses of teh upper plot show the standardized
residuals of model fm4 and the circles those of fm5.

> library(nlme)
> hddata$fitted.fm3<-predict(fm3)
> fm5<-gls(h˜log(d+10),data=hddata,weights=varFixed(˜fitted.fm3))
> fm5
Generalized least squares fit by REML

Model: h ˜ log(d + 10)
Data: hddata
Log-restricted-likelihood: -454.3684

Coefficients:
(Intercept) log(d + 10)

-32.58795 14.42168

Variance function:
Structure: fixed weights
Formula: ˜fitted.fm3

Degrees of freedom: 200 total; 198 residual
Residual standard error: 0.660629

> windows(width=3,height=2.5)
> par(mai=c(0.6,0.5,0.1,0.1),mgp=c(2,0.7,0),cex=0.8)
> plot(predict(fm5),
+ resid(fm5,type="pearson"),
+ xlab="Predicted value",
+ ylab="Standardized residual")
> points(predict(fm4),
+ resid(fm4,type="pearson"),pch=3)
> mywhiskers(predict(fm5),resid(fm5,type="pearson"),se=FALSE,add=TRUE)
> mywhiskers(predict(fm5),resid(fm5,type="pearson"),add=TRUE,lwd=3)

Plot 2.7 shows that, the residuals differ slightly, and estimates for residual stan-
dard error are very different. The slight differences result from the use of REML for
estimating the residual variance. The difference in standard error is an artifact, result-
ing from that we assumed the variance to be proportional to predicted value from fm4,
whereas in the previous example it was assumed to be proportional to the predicted
variance. The following code illustrates a manually computed model that corresponds
to the REML-model. The squared ratio of standard errors (0.6606/0.9775)2 is equal
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to the coefficient of the variance function, 0.4568.

> fm6<-update(fm3,weight=1/predict(fm3))
> summary(fm6)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -32.5880 1.5801 -20.62 <2e-16 ***
log(d + 10) 14.4217 0.5115 28.19 <2e-16 ***
...
Residual standard error: 0.6606 on 198 degrees of freedom
...

Another alternative for the variance function could be var(ei) = σ2|di|2δ . A model
with such a variance function can be fitted using

> fm7<-gls(h˜log(d+10),data=hddata,weights=varPower(0.5,˜d))
> fm7
Generalized least squares fit by REML
Model: h ˜ log(d + 10)
Data: hddata
Log-restricted-likelihood: -452.6542

Coefficients:
(Intercept) log(d + 10)
-32.08281 14.25532

Variance function:
Structure: Power of variance covariate
Formula: ˜d
Parameter estimates:

power
0.5590031
Degrees of freedom: 200 total; 198 residual
Residual standard error: 0.5427085

The lower plot of figure2.7 shows the standardized residuals from this model. It

is impossible to say which of the two alternative variance functions was better. Slight

differences are seen in the estimates of the fixed parameters.

It is easy to see, how all the results on OLS can be easily derived by replacing V

with I . Furthermore, we still rely only on assumptions on expectation, variance and

covariance of residuals, and no specific assumption on the distribution was made.

2.3 Tests of the regression relationship

Until now, we only have assumed that ε is independent and has constant variance. In

order to be able to test the significance of predictors, we additionally assume that εi are

independent observations from normal distribution

εi ∼ N(0, σ2)

. This implies that

ε ∼ Nn(0, σ2I)

and

y ∼ Nn(Xb, σ2I)



2.3. TESTS OF THE REGRESSION RELATIONSHIP 73

It results from the normality of the residuals (or of the response) that

b̂ ∼ Np(b, σ2(X′X)−1)

(y −Xb̂)′(y −Xb̂)
σ2

∼ χ2(n− p)

Furthermore, the fit Xb̂ and residual ε are uncorrelated. Because their joint distribution

is multinormal, they are also independent. Thus, also b̂ and σ̂2 are independent.

2.3.1 Sums of squares

The overall variation of response around its mean is defined as

SStot =
∑

(yi − ȳ)2 .

It can be can be divided into two components: the unexplained variation (residual sum

of squares)

RSS =
∑

(yi − ŷi)

and explained variation

SSreg = SStot −RSS .

A widely used figure for evaluation of the goodness of fit of the regression relation-

ship is the degree of determination

R2 = 1− RSS

SStot
=
SSreg
SStot

which tells which portion of the total variation in y was explained by the estimated

regression relationship. However, even thoughR2 is a useful figure for comparison, the

model evaluations should never be based on it alone. It does not tell if the assumptions

of the linear model were met or not. In addition, one should note that R2 is different in

different scale. With the single-predictor regression, the coefficient of determination is

the squared correlation coefficient between x and y.

The adjusted R2 takes into account the degrees of freedom that are used for model

fitting. it is defined as

R2
adj = 1− (1−R2)

n− 1
n− p− 1

.

Example 2.14 The following code manually computes R2 for the model of example
2.1.

> SStot<-sum((onestand$h-mean(onestand$h))ˆ2)
> RSS<-sum(resid(fm1)ˆ2)
> SSreg<-SStot-RSS
> R2<-SSreg/SStot
> R2
[1] 0.2715626
> 1-(1-R2)*(20-1)/(20-1-1)
[1] 0.2310938
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The same value is printed by summary:

> summary(fm1)
...
Multiple R-squared: 0.2716, Adjusted R-squared: 0.2311
...

Example 2.15 Two models, where one has log(V ) as the response and the other has

V . The value of R2 is completely different.

2.3.2 F-test for the significance of regression

A very basic question about the regression relationship is, whether the explanatory vari-

ables significantly explain the variation of the response. This question can be answered

by testing if the explained variation is big when compared to the unexplained variation.

The Null and alternative hypotheses are

H0 : b0 = b1 = . . . = bp = 0

H1 : somebi 6= 0

The test statistic is

Fobs =
SSreg/p

RSS/(n− p− 1)

It results from the normality of residuals that the the two sums of squares in the test

statistic are distributed according to χ2 distribution with p and n − p − 1 degrees

of freedom for numerator and denominator, respectively. Thus, we remember from

section 1.4.3 that the test statistic is distributed according to F (p, n − p − 1) degrees

of freedom. The p-value is

p = P (F > Fobs),

i.e., the value of cdf of F-distribution with p and n− p− 1 degrees of freedom at Fobs.

Example 2.16 To do tests, the first step is to check if the assumptions on the model were
met. To do this, we plot the Normal quantile-quantile plots, which plot the realized
residual quantiles against the theoretical quantiles based on Normal distribution. If
normality is met, these observations should be close to a line having constant of 0 and
coefficient of 1.

qqnorm(resid(fm1),main="Q-Q-plot for fm1")
abline(0,1)
qqnorm(resid(fm2),main="Q-Q-plot for fm2")
abline(0,1)

The plots are shown in figure 2.8. The largest observed residual is overly large to

be from a normal distribution, especially for model fm1. However, we regard this plot

good enough, and trust on normality in our tests.

Example 2.17 For model 2.1, the F test statistic is computed as follows
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Figure 2.8: Normal Q-Q plots for model fm1 and fm2.

> Fobs<-SSreg/1/(RSS/(20-1-1))
> Fobs
[1] 6.710426
> 1-pf(Fobs,1,18)
[1] 0.01846628

Compare also to

> summary(fm1)
...
F-statistic: 6.71 on 1 and 18 DF, p-value: 0.01847

The results show that there is a statistically significant (p=0.018) dependence be-

tween tree height and diameter in the example stand.

2.3.3 t-test for coefficients

Because σ2 is replaced with the estimated error variance, σ̂2, the confidence intervals

and tests for parameter vector b can be derived using result

p′b̂− p′b

σ̂
√

p′(X′X)−1p
∼ N(0, 1)

where p is any vector of length same length as b. The distribution of only one element

of bsay bi is obtained by having all elements of p as zeros, except for the ith element,

which is given the value of 1. Based on the above equation, the 100(1−α)% confidence

interval for p′b̂ is

p′b̂± tα/2;n−pσ̂
√

p′(X′X)−1p
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The same results can also be used for construction of tests. The null and alternative

hypotheses are

H0 : p′b = 0

H1 : p′b 6= 0

The test statistic is

tobs =
p′b̂

σ̂
√

p′(X′X)−1p

Under the null hypothesis, t ∼ t(n − p). The null hypothesis is rejected if |t| >
tα/2;n−p. A more informative approach is to compute and report the p-value. The p-

value is computed as p = P (|t| > |tobs|) = 2P (t > tobs), i.e, twice the the value of the

cumulative distribution function of t-distribution with n − p degrees of freedom. The

t-tests and p-values reported bu statistical model-fitting procedures are applications of

this test.
Example 2.18 A researcher may be interested whether the level of the H-D curve could
be assumed to be the same for both tree species. A test on such a null hypothesis is seen
directly from the t-test of the tree species dummy variable. In this case, null hypothesis
on different constant for different tree species would be rejected (p-value = 0.14).
> summary(fm2)
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.6565 3.6817 2.623 0.01782 *
d 0.3936 0.1317 2.988 0.00827 **
as.factor(pl)2 0.7539 0.4918 1.533 0.14366
...

Example 2.19 We want to test whether the constant of the model of example 2.1 is 1.3

meters. For this purpose, we define

p =
[

1
0

]
b =

[
1.3
0

]
The test statistic is computed as follows.
> p<-c(1,0) # t-value for constant
> p
[1] 1 0
> b<-c(1.3,0)
> bhat<-coef(fm1) # estimate of b
> bhat
(Intercept) d
11.4394735 0.3421870
> sigma<-summary(fm1)$sigma # residual s.e.
> sigma
[1] 1.102579
> X<-cbind(1,onestand$d)
> se<-(sigma*sqrt(p%*%solve(t(X)%*%X)%*%p))
> se

[,1]
[1,] 3.621877
> t<-(p%*%bhat-p%*%b)/se
> t

[,1]
[1,] 2.799508
> 2*(1-pt(t,20-2))

[,1]
[1,] 0.01184922
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The p-value is 0.01, which shows that the null hypothesis about constant of 1.3

meters is rejected. Our model predicts height of 11 meters for trees of diameter 0.

Maybe a better model specification is needed.
The same result is obtained by fitting a restricted model using offset in our

model. As the restriction is made for the constant, we first need to add a variable in-
cluding ones into our dataset. Then we fit a model without constant using ’-1 in h=d-1,
but specify a predefined constant of 1.3 by using argument offset=I(1.3*ones).

> onestand$ones<-1
> fm2<-lm(h˜d-1,data=onestand,offset=I(1.3*ones))
> anova(fm1,fm2)
Analysis of Variance Table

Model 1: h ˜ d
Model 2: h ˜ d - 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 18 21.8823
2 19 31.4099 -1 -9.5276 7.8372 0.01185 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The same result can be seen from the following table by comparing the standard
error of the constant to the difference between assumed and estimated value of the
constant.

> summary(fm1)

Call:
lm(formula = h ˜ d, data = onestand)
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.4395 3.6219 3.158 0.00544 **
d 0.3422 0.1321 2.590 0.01847 *
...

2.3.4 Testing several coefficients at the same time

The t-tests produced by statistical packages usually perform two kinds of standard

tests: the F-test for significance of the regression relationship, and a t-test for testing if

individual coefficients significantly differ from 0. The t-test approach of the previous

section can also be used for testing several individual coefficients at once. Another,

perhaps more easily applicable approach is to use F-test.

Assume that we have regression relationship y = Xb + e, and we want to test

a reduced model with different constraints for the model. Those constraints may be

whatever, including dropping some predictors, giving a constant value for a coefficient,

or setting some coefficients to be equal. Whatever constraints are made they result

to a constrained model, which is a special case of the more general model. A test

for testing if removing the constraints significantly improved the fit is formulated as

follows. Define RSSNH as the sum of squares from the reduced (constrained) model,

having q predictors, and RSSAH as the sum of squares from the full (unconstrained)

model having p predictors. These sums of squares are independent, χ2-distributed

random variables. Furthermore, also the difference between two χ2-distributed random
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variables is distributed according to χ2 distribution. Thus, the test statistic

Fobs =
(RSSNH −RSSAH)/(p− q)

RSSAH/(n− p− 1)

is distributed according to F -distribution with p− q and n− p− 1 degrees of freedom

if the null hypothesis is true. The p-value is obtained from F distribution in a similar

way as earlier. Exactly the same test would be obtained also using the likelihood ratio

principle.

In R, these comparisons can be carried out easily by using the anova function,

as demonstrated in the following examples. The constrained model can be fitted by

dropping predictors. A constant coefficient is assumed for a specific pedictor can be

given by using the offset argument in lm(formula,data,offset).

Example 2.20 Assume we want to test if the model with separate constants and slopes
for the two species was significantly different from the model with common slope and
constant. The full model is the one with species-specific coefficients and the constrained
model is the one with common coefficients. The models are fitted and test statistics
computed as follows. Note that all main effects and interactions are included by having
model equation h d*pl.
> full<-lm(h˜d*pl,data=onestand)
> constr<-lm(h˜d,data=onestand)
> RSSnh<-sum(resid(constr)ˆ2)
> RSSah<-sum(resid(full)ˆ2)
> Fobs<-(RSSnh-RSSah)/(4-2)/(RSSah/(20-3-1))
> Fobs
[1] 1.988027
> 1-pf(Fobs,2,16)
[1] 0.1693878

The full model is not significantly better than the restricted model. Using function
anova results in an identical result:
> anova(constr,full)
Analysis of Variance Table

Model 1: h ˜ d
Model 2: h ˜ d * pl
Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 21.8823
2 16 17.5268 2 4.3555 1.988 0.1694

The t-test and F test lead to similar inference if the test is such that it can be per-

formed with both methods. This is demonstrated by the following example.

Example 2.21 In example 2.18, model fm2 included separate coefficients for both tree
species. A constrained version is the model fm1, which includes no species-specific
parameters. It was shown that the p-value for the species dummy was 0.14366, which
indicates that the level does not vary between tree species. The same hypothesis can be
tested by making F-test between models fm2 and fm1. We get
> anova(fm1,fm2)
Analysis of Variance Table

Model 1: h ˜ d
Model 2: h ˜ d + as.factor(pl)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 18 21.8823
2 17 19.2244 1 2.6578 2.3503 0.1437

The p-value and resulting inference are exactly the same as we got from the t-test.
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2.4 Checking the validity of assumptions

The basic assumptions of a liner model are that the model is correct, observations are

independent and have equal variance. In addition, for testing hypotheses on the model

estimated by least squares, an assumption about normality of residuals is needed. For

ML-estimation, the normality needs to be assumed already at the model fitting stage. In

this section, strategies for situations where those assumptions are not met are discussed.

R has method plot() for producing some standard plots (such as residual and qq-

plots) from a fitted model.

2.4.1 Model shape

The assumption that the model is correct means that the assumed function for the mod-

eled relationship is able to describe the true relationship between the variables. In

practice, we seldom have any well-justified theory for the assumed relationship, and

the model form is many times a result of a trial-and-error procedure. The simplest

way to account for the observed non-linearities in the relationships is to make trans-

formations to the predictors. The relationship could also be linearized by making

transformations to the response, but this should be avoided if possible.

With single-predictor regression, an initial guess for the model shape can be found

by plotting the response against predictor. If the relationship is concave, then a concave

transformation to the predictor would linearize the relationship. With convex relation-

ship, a convex transformation can be used. Commonly used convex transformations

are ex and x2. Commonly used concave transformations are ln(x),
√
x and (−)1/x.

With more complex relationships, the same predictor can be included twice, with dif-

ferent transformations. If the relationship is good, a plotting model residuals against

the predictors should not show any trend. To recognize the trends, one can use lowess

smoothers. One alternative is to use the approach that was presented in example 2.7,

i.e., plotting the residuals against the predictor, and computing class means of the resid-

uals, and plotting their confidence intervals. If roughly 95% of the confidence intervals

overlap x-axis and no clear trend can be found in class means, I would believe that the

model form is good. Function mywhiskers() of example 2.7 with option se=TRUE

can be used to perform such analysis.

The above rules can also be used with multiple regression. In multiple regression,

the response should be first plotted against all potential predictors to get a view on

the shape of the relationship. The fitted model should be further analyzed by plotting

the residuals against all the predictors, and checking if there are nonlinear trends in

the residuals. Lowess smoothers or function mywhiskers can be used to detect also
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those trends.

The nonlinearity can also be tested through a formal test. In such a test, two alterna-

tive regressions are fitted: The null model with the predictor x included as a continuous

predictor and the alternative model in which all k distinct values of x are included as

an indicator (dummy variable). Testing the performance of alternative model against

the null model using a F-test gives a test for nonlinearity.

H0 : Modelislinear

H1 : Modelisnonlinear

Fobs =
(RSS0 −RSS1)/(k − 2)

RSS1/(n− k)

where RSS0 is the residual sum of squares from the null model and RSS1 that of the

alternative model. The p-value is obtained from F-distribution with k − 2 and n − k

degrees of freedom.

It is quite common that none of the commonly used transformations linearizes the

relationship. In such case, one could try Box-Cox transformations (Box and Cox 1962),

which is a generalized transformation giving the most commonly used transformations

as special cases. Another approach is spline regression. Harrell (2001, p. 20-34)

presents an easy-to-use restricted cubic spine approach, which is able to produce var-

ious shapes of relationship. A third approach is the nonlinear regression, where no

restrictions are made for the function of the relationship.

Example 2.22 Harrells spline regression

2.4.2 Independence of observations

The independence of observations should be thought about when collecting the data.

Maybe the most important sources causing dependence among observations are spatial

and temporal autocorrelation.

In forestry, the spatial autocorrelation often arises from that trees that are close to

each other tend to be more similar to each other than distant trees. If the distances

between trees are known, the spatial autocorrelation can be modeled through a correl-

ogram, variogram and covariogram, which are related to each others in a similar way

than variance, covariance and correlation are related to each other. The covariogram

is constructed by fitting an OLS regression to the data, and then plotting a the cross-

products of all possible pairs of residuals against the geographical distance between

these two observations. The covariogram is then obtained by fitting an appropriate (de-

creasing) function to these data. If such a trend is found, then spatial autocorrelation

exists among the observations. The covariagram can be used to estimate the covariance
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between any two observations with known distance, which are then used in GLS ap-

proach to account for the autocorrelation. The estimated covariances (up to a scaling

constant) can be written to matrix V , and the model can be then fitted using general-

ized least squares. This approach, which is clearly one special case of the linear model,

is known as kriging in spatial statistics (e.g., Cressie 1993).

The temporal autocorrelation can be analyzed and taken into account in naanal-

ogous way than the spatial autocorrelation. We just have the geographical distance

replaced with the time difference between the observations. Such approach leads to

analysis of lagged residuals, which are used to fit an appropriate model for the tempo-

ral autocorrelation. After the autocorrelation model has been estimated, GLS approach

is used to fit a linear model that properly accounts for the temporal autocorrelation.

Another cause of interdependencies among observations is hierarchy of the data.

For example, branches may be sampled from different trees for determination of biomass,

the branches of one tree being somehow similar to each other. As an another example,

trees may be measured from different stands, trees of one stand being similar and dif-

ferent from trees of other stands. Furthermore, repeated measurements may be taken

from several plots, observations of one and the same plot at different points in time

being similar and different to observations of other plots. All these examples lead to a

situation where the data consists of several groups, and observations within the same

group are correlated. This kind of structure can be taken into account through variance

component modeling, which is dealt in more detail in the next chapter. In the vari-

ance component approach, a constant correlation is assumed among observations from

different groups.

2.4.3 Constant residual variance

In ordinary least squares, the variance of residuals is assumed to be constant. The

validity of this assumption can be taken into account by plotting the residuals of a

fitted OLS model against the fitted values. The obtained plot should not show any

trend in the variance. However, it is not always easy to see if there is trend in the

variance or not, especially if the observations are not distributed evenly along the x-

axis, having the fitted values. To help with this problem, one approach is to compute

standard deviations of the residuals in different classes of fitted value, and compare

them to each other. If the standard deviations are equal and do not show any trend with

respect to the fitted values, the assumption about constant variance seems to be met. An

example of such analysis was domne in example 2.7 using the function mywhiskers

with option se=FALSE.

A formal test can als be conducted for testing the heteroscedasticity (see Weis-
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berg2005).

The violation of the constant variance can be corrected either by making a trans-

formation to the response or through the use of a variance function. A very usually

applied transformation is the logarithmic transformation, which is justified by the log-

normal distribution for variables getting only positive values. A straightforward way

for using a variance function is is to fit OLS model, then model the variance using the

squared residuals, and refit the model with GLS using the estimated variance function.

An example of such procedure was shown in example 2.11. To check if the utilized

variance function properly accounts for the heterogeneous variance, a plot of standard-

ized residuals should express a constant variance against the response.

A problem with the transformation approach is that it also has an effect on the re-

lationship between predictors and response. Thus, a transformation should be found

that both homogenizes the variance and results in linear relationship between response

and predictor. Furthermore, making transformation causes that the model gives unbi-

ased predictions for the transformed variables (e.g., for the logarithmic height), imply-

ing that the prediction for the back transformed variable (e.g., for the total height) is

biased. For these reasons, I would recommend using variance functions rather than

making transformations into the response to homogenize the residual variance. If the

transformation approach is used and normality of residuals of the fitted model are as-

sumed, the bias can be corrected by adding half of the residual error to the prediction

before backward transformation. This bias correction is based on the expected value of

lognormal random variable EX = eµ+σ2/2.

2.4.4 Normality

As noted several times before, the normality of residuals is needed only for testing pur-

poses. Thus, if the previously stated assumptions are met, normality is not needed e.g.

for the OLS or GLS estimates b̂ to be best linear unbiased estimators for b. However,

all t- and F-test on the regression relationship require normality. Thus, the normality

becomes important for example, in studies where the linear model is used for testing

the impacts of predictors to the response.

The very general statistical results (central limit theorem and law of large num-

bers) can be used as a justification to assume that distribution of any random variable

is normal, unless it is clearly violated. In regression analysis, the normality can be

checked using quantile-to-quantile plots (qq-plots), which plot the ordered residuals

against corresponding quantiles of standard normal distribution. If the qq-plot are close

to a straight line, the residuals follow the normal distribution.
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2.5 Prediction

With the linear model, prediction for a new individual with predictors X∗ is obtained

as ỹ = b̂X∗.

The prediction includes errors caused by

• model uncertainty,

• estimation errors of the parameters, var(b̂), and

• residual variance.

The variance-covariance matrix of prediction, that accounts for the residual and param-

eter uncertainty, is given as

var(ỹ) = σ2 + σ2X0X
′X−1X ′

0 = σ2 + X0 var(b̂)X0

The confidence interval for the prediction can be formulated based on the prediction

variance and t-distribution.

Example 2.23 We want to make predictions from model fm1 for diameters 25, . . . , 30.
The code below defines the matrix X0 for these predictions.

> Xstar<-cbind(1,25:30)
> attributes(fm1) # look for attributes that include the desired matrices and vectors
$names
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

$class
[1] "lm"

> attributes(summary(fm1)) # cov unscaled includes the matrix solve(X%*%X)
$names
[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

$class
[1] "summary.lm"

> sigma<-summary(fm1)$sigma
> varb<-sigmaˆ2*summary(fm1)$cov.unscaled
>
> varh<-diag(rep(sigmaˆ2,dim(Xstar)[1]))+Xstar%*%varb%*%t(Xstar)
> varh

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.373239251 0.116465081 0.07537208 0.03427907 -0.006813936 -0.047906941
[2,] 0.116465081 1.308502499 0.06917759 0.04553384 0.021890096 -0.001753651
[3,] 0.075372075 0.069177588 1.27866427 0.05678861 0.050594127 0.044399640
[4,] 0.034279070 0.045533842 0.05678861 1.28372455 0.079298158 0.090552931
[5,] -0.006813936 0.021890096 0.05059413 0.07929816 1.323683354 0.136706221
[6,] -0.047906941 -0.001753651 0.04439964 0.09055293 0.136706221 1.398540676
> cov2cor(varh)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.000000000 0.086883108 0.05687994 0.02581785 -0.005053973 -0.034569077
[2,] 0.086883108 1.000000000 0.05348104 0.03513266 0.016632913 -0.001296338
[3,] 0.056879937 0.053481044 1.00000000 0.04432483 0.038889270 0.033201953
[4,] 0.025817846 0.035132665 0.04432483 1.00000000 0.060832424 0.067581688
[5,] -0.005053973 0.016632913 0.03888927 0.06083242 1.000000000 0.100475153
[6,] -0.034569077 -0.001296338 0.03320195 0.06758169 0.100475153 1.000000000
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Figure 2.9: Predictions (thick solid line) and approximate 95% prediction intervals
for model fm1 (thin solid line). The dashed line show intervals that do not take into
account the estimation errors of the coefficients.

The variance-covariance matrix is not a diagonal, but the predictions are slightly
correlated. These correlations arise from the estimation errors of the parameters: all
predictions are based on the same estimates of b, and thus are correlated due to this.
However, the correlations are not very strong, as indicated by the correlation matrix
shown in the lower matrix. Thus, we ignore these correlations and plot the confidence
intervals as if the predictions were uncorrelated. The confidence intervals are shown
in Figure 2.9. The narrow intervals plotted using dashed line do not take into account
the estimation errors of parameters. The wider intervals shown by the solid lines are
the prediction intervals that also take into account the estimation errors.

> pred<-Xstar%*%coef(fm1)
> tquantile<-qt(0.975,20-2)
> ub1<-pred+sigma*tquantile
> lb1<-pred-sigma*tquantile
> ub2<-pred+diag(varh)*tquantile
> lb2<-pred-diag(varh)*tquantile
>
> windows(width=3,height=3)
> par(mfcol=c(1,1),mai=c(0.6,0.5,0.5,0.1),mgp=c(2,0.7,0),cex=0.8)
> plot(Xstar[,2],pred,type="l",ylim=range(c(ub2,lb2)),xlab="diameter, cm",ylab="height, m",lwd=2)
> lines(Xstar[,2],ub1,lty="dashed")
> lines(Xstar[,2],lb1,lty="dashed")
> lines(Xstar[,2],ub2)
> lines(Xstar[,2],lb2)

2.6 Estimation with maximum likelihood

The previous section presented how the parameters of the linear model can be estimated

using methods based on least squares. In this section, we make an assumption about the

distribution of the random variable y, and estimate the parameters using the method of

maximum likelihood. Section 1.5.1 presented the general idea of maximum likelihood.

In the ML estimation of the linear model, the response y is assumed to be normally

distributed. Furthermore, parameter µ is not assumed to be constant, but it is is written

as a linear function of predictors as µ = µ(Xb). The likelihood (or log-likelihood)
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will then be a function of b and σ2, and the ML estimate of them is the combination

that maximizes the (log-)likelihood.

Letting also exp(σ2) to be a function of predictors (say, exp(σ2) = f(X, c)), we

can fit a model with heteroscedastic residuals. The exponential transformation is used

to constraint the σ2 to be positive. This is based om the invariance property of ML-

estimator, and was used also in example 1.30. Both the parameters b and c can be

estimated by maximizing the (log-)likelihood on b and c. Furthermore, we may define

any positive definite structure for V , parameterize it and estimate the parameters by

maximizing the likelihood on all the specified parameters.

We could also assume some other distribution for y than the normal. For exam-

ple, yi may be a binary random variables having the Bernoulli(p) distribution. Such

a variable would get only values 0 and 1, the value 0 indicating absence and value 1

presence of the characteristic being modeled. Furthermore, if y are counts, a realis-

tic assumption could be the Poisson(λ) distribution. In those cases, the parameters of

the assumed distribution are just written as a linear combination of predictors, (e.g.,

logit−1(p) = f(Xb) in the case of bernoulli distribution and exp(λ) = λXb in the

case of Poisson distribution. The functions logit−1 and exp are link functions which

are used to ensure that the parameter is within the parameter space, i.e., 0 ≤ p ≤ 1

and λ ≥ 0. The parameters are then estimated by maximizing the log-likelihood on

b. Non-normal models where a function of parameters is assumed to be linear in b are

called generalized linear models, and are dealt more in detail in chapter 4.

2.6.1 ML for the single predictor regression

Let us state model (2.1) in a bit different form:

E(yi) = µ(xi) = b0 + b1xi

yi ∼ indep.N [µ(xi), σ2] i = 1, 2, . . . , n

where µ(xi) indicates that the expectation of y is a function of x. The four important

assumptions incorporated in the models are (i) The yi follow a normal distribution,

(ii) are independent, (iii) have equal variance, and (iv) the mean of y is linear in x.

Compared to the least squares assumptions, the only difference is the assumption on

normality of y.
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The likelihood based on normal distribution is

L =
∏
i

fN (µ(xi), σ)

=
∏
i

1√
2πσ2

exp
[
− 1

2σ2
(yi − µ(xi))

2

]
=

∏
i

1√
2πσ2

exp
[
− 1

2σ2
(yi − b0 − b1xi)

2

]
Taking logarithms yields the log likelihood as

l = lnL

=
∑
i

[
− ln

(
2πσ2

)1/2 − 1
2σ2

(yi − b0 − b1xi)
2−
]

= −n
2

ln 2π − n

2
lnσ2 − 1

2σ2

∑
i

(yi − b0 − b1xi)
2
.

Differentiating the log likelihood with respect to the three parameters (b0, b1m σ2)

gives the following equations

∂l

∂b0
=

1
σ2

∑
i

(yi − b0 − b1xi)

∂l

∂b1
=

1
σ2

∑
i

(
xiyi − b0xi − b1x

2
i

)
∂l

∂σ2
= − n

2σ2
+

1
σ4

∑
i

(yi − b0 − b1xi)
2

Setting these equations to 0 and solving for the three parameters gives the ML estima-

tors. Start with the lowest equation by solving it for σ2. Setting it equal to 0 gives

σ̂2 =
1
n

∑
i

(
yi − b̂0 − b̂ixi

)
,

which shows the ML estimator for the residual variance, given the estimates for b0 and

b1. It also shows that σ̂2 is always positive and greater than zero, unless predictions and

observations are exactly the same. Thus, the equations setting the two upper equations

to zero can be multiplied with σ2 which yields exactly same system of equations that

was solved to get the OLS estimates. Thus, the ML-estimators

b̂0 = ȳ − b1x̄

b̂1 =
1
n

∑
i xi
∑
i yi −

∑
i xy

1
n (
∑
i xi)

2 −
∑
i x

2

are exactly same as the OLS-estimators. It is important to note that the estimator for

the residual variance, ̂sigma2 = RSS
N differs from (2.2) in that nominator n − 2 is

replaced by n. Thus, the ML estimate of residual variance is biased downwards.
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2.6.2 ML for the linear model with uncorrelated errors and con-
stant variances

As with LS methods, the results on simple linear regression generalize to the multivari-

ate case. For estimation of the linear model with the method of maximum likelihood,

the model with uncorrelated errors and constant variance is defined as

y ∼ N [Xb, σ2I]

The likelihood is based on the multivariate normal distribution:

L = L(b, σ2|y) =
exp

[
− 1

2(y − Xb)′I/σ2(y − Xb)
]

(aπσ2)1/2n

The log likelihood is

l = −n
2

ln 2π − n

2
lnσ2 − 1

2
(y − Xb)′(y − Xb)/σ2 .

The partial derivatives with respect to b and σ2 are

∂l

∂b
=

X′y − X′Xb

σ2

∂l

∂σ2
=

(y − Xb)′(y − Xb)
2σ2

− n

aσ2

Setting the upper equation to zero gives the ML estimator for b as b̂ = (X′X)−1X′y,

which is identical to the OLS estimator. From equating the lower derivative to zero and

solving for σ2 yields the ML estimator for residual variance, which is σ̂2 = 1
n(y −

Xb)′(y − Xb). This is identical to the estimator (2.5), except for the important

replacement of n− p by n in the denominator.

2.6.3 ML for LM with a general residual variance structure

The more general model, corresponding to the GLS model, is

y ∼ N [Xb, V ]

The log likelihood is

l = −n
2

ln 2π − 1
2

ln |V | − 1
2
(y − Xb)′V −1(y − Xb) ,

The derivation for the ML estimators can be found from McCulloch and Searle (2001,

p. 178-181). As one could guess, the results are identical to the results on GLS, except

for that the denominator of (2.8) is replaced with n.

As a summary, the method of maximum likelihood is equivalent to OLS and GLS

approaches in estimating the parameters of a linear model, except that it results in

downward biased estimates for the residual variance. The bias is higher with smaller

datasets, and vanishes with very large datasets.
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2.6.4 Restricted maximum likelihood

It has be seen that the LS and ML principles lead to identical results for estimation of b,

except for that LS principle is based on more relaxed assumptions about the distribution

of residuals (or distribution of y). However, with the variance of the residual error,

these two methods differ in the denominator of the estimator for residual variance.

It was shown that the estimator obtained from OLS was unbiased, whereas the ML

estimator was an underestimate. The Restricted or Residual ML (REML) approach

has not this problem, and that is why it has become one of the most widely applied

estimation methods for linear mixed models and variance components models.

In restricted maximum likelihood, a specific linear combination of the original data

is modeled using maximum likelihood. The assumed model is specified as

K′y ∼ N [0,K′V ′K] ,

where K is a n × p matrix having full column rank. Furthermore, it has the specific

property that K′X = 0. The matrix K is specified as K′ = C′(I−X(X′X)−X′)

with some matrix C. The ML estimators can thus be derived from ML-estimators by

making replacements

y = K′yX = K′XV = K′V K

Essentially, we see that the property K′X = 0 causes the fixed effect part of REML

model to be zero, implying that it does not involve b at all. Thus REML can be used

only for estimating the parameters specifying matrix V . With balanced data, these

estimators are unbiased and equivalent to the LS counterparts. The estimation of b

involves first estimating V using ML with the REML version of the model, and then

estimating b using the generalized least squares. The REML approach has become

popular in mixed-effect-modeling for the following reasons (McCulloch and Searle

2001):

1. REML is sensible for balanced data, where REML solutions are the GLS and

ANOVA estimators, which are minimal variance unbiased estimators under nor-

mality. However these proiperties may not apply for unbalanced data.

2. REML takes into account the degrees of freedom used in estimating the fixed

effects b. This is important when the length of b is large in relation to the number

of observations. Presumably this feature occurs for unbalanced data, too.

3. REML estimates of the parameters of V are invariant to the estimates of b.

4. REML estimates may not be as sensitive to outliers as ML estimates.
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2.7 About modeling strategies

2.7.1 Selection of predictors

There are several ways for prediction of predictors to a regression model. The re-

searcher should always use his/her own expertise in selecting the predictors. If a theory

exists on the relationship between the variables, the theory should be used in selecting

the predictors and also the shape of the model. Automaticed procedures, such as step-

wise backward or forward algorithms should be avoided, and reasons for having the

selected predictors in the model should be searched for. Plotting residuals, predictors

and responses in all possible ways always helps, for example, in detecting peculiar

observations that may the cause cause for unexpected predictors to be significant.

2.7.2 The purpose of modeling

It is important for a researcher to recognize the aim of the modeling. With different

research problems, different assumptions of the model become fundamental. As an ex-

ample let us consider two distinct uses of regression model: explaining and prediction.

Explaining is used, for example, when the effect of a new silvicultural method

on the growth of a sapling is evaluated. With such a model, the interesting research

questions are (i) does the method have an impact on the growth and (b) how big is

the impact. In this situation, the regression model is used in a similar fashion as the

analysis of variance or analysis of covariance. When regression model is used for ex-

planation or for testing interesting effects, study of the assumptions behind the test of

regression coefficients is very crucial. It is, for example, quite common to make trans-

formations to the response in order to make the residuals normal and homogeneous.

If the assumptions are not met, also the test may be biased. Also high correlation

among the predictors may cause problems. Of two highly correlated predictors, it may

be impossible to say which one has an effect on the response or which not. It is also a

quite common situation that the highly correlated predictors are insignificant predictors

when used alone, but including them both may give very high significance to them.

The way of selecting the predictors is also important with models used for expla-

nation and testing purposes, as well as documenting all utilized predictors; also those

that were found insignificant. For example, suppose we have response variable y and

data where we have 100 potential x-variables, of which none is a significant predictor

in reality. However, by testing the significance of all these predictors, one at a time,

at the risk level of 0.05, the expected number of predictors with p-value of 0.05 or

less is 5 just due to the definition of p-value. Reporting only those 5 variables without

mentioning the 95 insignificant predictors would lead to very different inference than
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reporting of all the tests.

In prediction, the aim is to find a function that as accurately as possible predicts the

expected value of the response with given values of the predictors. With this model,

different assumptions become crucial. With prediction, the model form needs to be

chosen with care. Especially, the behavior of the selected function needs to be ana-

lyzed so that it would not lead to unrealistic results when applied beyond the range

of the modeling data. Such a risk is especially high if the model includes polynomial

terms. Furthermore, with predictive models, making transformations to the response

causes biased predictions in the original scale, correction of which requires assump-

tions on the distribution. The bias correction is also quite vulnerable to a violation in

the assumption.

On the other hand, violation of the assumptions about the normality and homogene-

ity of residuals is not that big a problem with predictive models: the estimates are still

unbiased, even though not the best possible. The violations in these assumptions may

just lead to problems in testing, leading to including predictors that are insignificant in

reality. Including insignificant predictors is possible especially if the predictors are se-

lected from among a large set of potential predictors through trial-and-error procedure,

or using a automatic rule, such as backward or forward procedure using large datasets.

However, these predictors usually have very small coefficient, meaning that they do

not have a big effect on the predictions. However, including extra predictors may not

lead to bad predictions, even though it may cause extra work in applications, where the

values of all predictors need to be known for the prediction to be possible.

2.8 Exercises

1. Data cherry.txt give the volume (cubic feet), height (feet) and diameter

(inches) (at 54 inches above ground) for a sample of 31 black cherry trees in

the Allegheny National Forest, Pennsylvania. The data were collected in order

to find an estimate for the volume of a tree (and therefore the timber yield), given

its height and diameter (Hand et al. 1994). Start your model development from

relationship Vi = b0D
b1
i H

b2
i .

(a) Linearize the model using an appropriate transformation. Specify the rela-

tionship between original parameters and the parameters of the linearized

model.

(b) Fit the model using lm.

(c) Define the model matrix X and response vector y for this model and es-

timate the parameters using matrix operations. Confirm that you got the
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same values as returned by function lm.

(d) Compute the hat matrix H , and estimate the residual variance σ̂2. Confirm

that you got the same values as returned by function lm.

(e) Compute the standard erros of parameter estimates as σ̂2(X′X)−1, t-

statistics, and p-values. Compare to coef(summary(model)).

(f) Compute the model residuals as e = y −Xb. Compute R2 for the model,

F -statistic and corresponding p-value.

(g) Based on that volume is determined by three dimensions, and diameter and

height by one dimension, specify a justified null hypothesis about the the

values of b1 and b2. Using argument offset in function lm, fit a null

model. Using function anova test whether the full model is significantly

better than the null model.

2. Data plot48.txt includes data from one measured plot. The variables in the

data are: puunro=tree id, pl=tree species (1=pine), xk=x-coordinate of the tree

location in the stand, yk=y-coordinate of tree location in the satnd, d=tree diame-

ter (cm), h=tree height (m), t=tree age, ig1=basal area growth during the coming

5 year period, id1=diameter growth in the coming 5 year perioid, ig2=past basal

area growth, id2=past diameter growth. The aim is to model the coming basal

are growth (ig1) of a tree using information on past growth, and current age,

diameter and height of the tree.

(a) Graphically explore the relationships of potential explanatory variables and

ig1. What would you do with the one outlier of the data.

(b) Start from model ig1i = b0 + b1 ∗ ig2i + ei). Check the validity of your

assumptions, and find a model that best fulfills the assumptions.

(c) Include other predictors and test whether they improved the model or not.

Report your final model.

(d) Extra. Using different models for spatial autocorrelation structures, test

whether the model could be improved by taking into account the spatial

autocorrelation.

3. Solve LS estimators b0 = ȳ− b1x̄ and b1 =
1
n

∑
i xi

∑
i yi−

∑
i xy

1
n (∑

i xi)2−
∑

i x
2

from equations

−2
n∑
i=1

yi + 2nb0 − 2b1
n∑
i=1

xi = 0

n∑
i=1

2yixi − 2b0
n∑
i=1

xi − 2b1
n∑
i=1

x2
i = 0
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Furthermore, show that the solution for b1 is equivalent to the more commonly

used form b1 = Sxy

Sxx
where Sxy =

∑
i (xi − x̄)(yi − ȳ) and Sxx =

∑
i (xi − x̄)2



Chapter 3

Linear mixed models

The mixed effect model is a model for modeling hierarchical populations, consisting of

groups and and individuals within groups. For example, the group may bee a sample

plot, and the individual may be tree within the plot. As another example, individuals

might be stands within a municipality, municipalities representing the groups. Such

population could be modeled either by using mixed models or by using fixed effect

models, i.e., we could fit a model including a binary indicator variable describing if

the individual belongs to a certain group or not. The difference between these models

arises from the type of the groups. With the fixed modeling approach, coefficients

would be estimated for each group in the data. Those effects would be fixed, describing

the difference between the group in hands from the default group. However, we would

mot be able to make inference on groups that are not included in or data. Thus, the

data should present all groups that are available, e.g., data should be available from all

municipalities of the study area.

If the groups represented in our data represent only a sample from a population of

groups, then the mixed model approach would be preferred. Such situation appears,

for example, when the data consists of trees within sample plots. All possible plots

would not be included in the data, an it is thus realistic to assume that the data only

represents a sample from an probably infinite population of sample plots. In the mixed

model, we are rather interested in the variation within plots and between plots. In a

mixed model, the total residual variation of the observations is divided to within-plot

and between-plot variation.

93
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3.1 Model formulation

3.1.1 The variance component model

A variance component model for variable y of individual i in group k is

yki = µ+ ak + eki (3.1)

where µ is a fixed population mean and part ak + eki includes the random parameters

(Pinheiro and Bates 2000). It divides the residual error of linear model into two in-

dependent parts, to a random group effect for group k and into a random residual for

individual i of group k. It is assumed that the group-effects and residual are indepen-

dent, normally distributed random variables with

ak ∼ NID(0, σ2
a)

and

eki ∼ NID(0, σ2)

There may be also other random effects, due to a more complicated structure of the

data. For example, individual i = 1, . . . , nk of group k = 1, . . . ,K may have been

observed at different points in time t = 1, . . . , T . A candidate model for such data

would be

ykti = µ+ ak + bt + ekti

where ak ∼ NID(0, σ2
a), bt ∼ NID(0, σ2

b ), and ekti ∼ NID(0, σ2). In this model,

we assume that the observations of different individuals have been taken in the same

point in time, thus assuming each observation to include the same effect for time t. In

this model, the group and time effects are crossed. And individuals are nested both

within groups and points in time.

If the measurements are taken at different points in time, it would be better to

assume them to be nested, i.e., measurements taken for individual i at different points

are somehow similar, but the tth measurement occasion of individual i is not similar to

the tth measurement occasion for other individuals. The nested model would be

yki = µ+ ak + bki + ekti

where ak ∼ NID(0, σ2
a), bkt ∼ NID(0, σ2

b ), and ekti ∼ NID(0, σ2). Now points

in time are nested within individuals, which are further nested within groups. This

kind of structure arises, for example, in an analysis of permanent plot data, where the

plots have been established at different years and remeasured with fixed (e.g., 5 year)

intervals. It would also be possible to define a model that is a combination of these two

models, i.e., has both crossed and nested time effects. In most cases, the hierarchical

populations lead to mixed models having one or more nested effects.
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3.1.2 Mixed model

The linear mixed model is a generalization of the variance component model. It in-

cludes both fixed and random parameters. With only one level of grouping and k fixed

predictors, it is defined as

yki = b0 + b1x1ki + . . .+ bpxpki + ak + eki . (3.2)

Part b0 + b1x1 + . . .+ bpxp is the fixed part, which has exactly the same meaning and

interpretation as the fixed part of the linear model of the previous section had. Part ak+

eki is the fixed part, which has exactly the same assumption and interpretation as the

random part of a variance component model had. Compared to the variance component

model (3.1), mixed model (3.2) differs only in that the fixed population mean has been

replaced with a linear function of fixed predictors and parameters. Compared to the

fixed-effects model, the residual of model (2.3), is partitioned into two parts in model

(3.2). This is such a special case of the multiple regression model, where observations

of the same group are correlated. The covariance between observations i and i′ of

group k is

cov(ak + eki, ak + eki′) = cov(ak, ak) + cov(ak, eki′) + cov(ak, eki) + cov(eki, eki′)

= var(ak)

= σ2
a

As in the variance component model (3.1), additional crossed and nested levels of

grouping can be included into the mixed-effect model.

By reorganizing terms, the mixed-effect model 3.2 can be written as

yki = (b0 + ak) + b1x1ki + . . .+ bpxpki + eki .

which shows that we are actually assuming that the constant of the model varies be-

tween groups, whereas the other coefficients are fixed. However, also other parameters

can be assumed to be random as well. This yields a special case of the mixed-effects

model that has sometimes been called the random coefficient model. With the single

predictor regression, the model becomes

yki = (b0 + ak) + (b1 + ck)xki + eki , (3.3)

where ak and ck are random, group effects which have bivariate normal distribution

with mean 0 and variance-covariance matrix

D = var
(
ak
ck

)
=
(

var(ak) cov(ak, ck)
cov(ak, ck) var(ak)

)
. (3.4)
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The other assumptians are as they were before. It is also possible to make restrictions

to the above structure, for example, by assuming that the covariance between random

effects is 0.

Presentation 3.3 is a good way to show that we are actually assuming random con-

stants and coefficients in a mixed modeling. However, it is often better to organize

terms into fixed and random parts. furthermore, we can add also other predictors to the

model to get a general mixed-effects model for a population with one level of grouping

yki = b0 + b1x1ki + . . .+ bpxpki + a0k + a1kx1ki + . . .+ aqkxqki + eki , (3.5)

where b0+b1x1ki+. . .+bpxpki is the fixed part and a0k+a1kx1ki+. . .+aqkxqki+eki
is the random part. The assumptions about them are as stated earlier.

3.1.3 Multiple levels of grouping

As the variance component model, also the mixed model can have multiple levels of

grouping. For example, we may have tree diameters and heights measured from per-

manent plots. Assuming a linear relationship between height and diameter, the height

for tree i at time t on plot k would follow model

hkti = Akt +Bktdkti + ekti

This model could be fitted separately for each plot and measurement occasion, lead-

ing to estimation of fixed parameters Akt and Bkt separately for each measurement

occasion within a plot.

Assuming that the measurement occasions in the data are a random sample of possi-

ble measurement occasions for that plot, and assuming that the plots represented in the

data are a sample from a population of sample plot, we could assume a mixed-effects

model having random plot- and time-effects both in the constant and slope,

hkti = α+ ak + akt + (β + bk + bkt)dkti + ekti,

which can be reorganized to

hkti = α+ βdkti + ak + bkdkti + akt + bktdkti + ekti,

where α and β are the population-level means of the constant and slope, ak and bk the

plot-level random effects with

Dk =
(
ak
bk

)
∼
(

var(ak) cov(ak, bk)
cov(ak, bk) var(bk)

)
and

Dkt

(
akt
bkt

)
∼
(

var(akt) cov(akt, bkt)
cov(akt, bkt) var(bkt)

)
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with any positive definite Dk and Dki. The random effects at different levels, as well

as the random errors are multinormally distributed and uncorrelated across the levels.

Again, the first two terms in the latter form are the fixed part, and the rest of the equation

is the random part.

3.1.4 Matrix formulation
Single level of grouping

Mixed-effects model (3.5) can be stated in a matrix form as follows

y = Xb + Zc + e . (3.6)

where Xb is the fixed part and Zc+ e the random part. The fixed part is similar to that

of the fixed-effects model.

For the random part, Z is the design matrix of the random part and c is the vector

of random parameters. The length of c id k × q, where k is the number of groups,

and q the number of group-specific random parameters. Correspondingly, matrix Z is

an has n rows and x × p columns. Thus, the number of columns in Z and the length

of c depends on the number of groups in the data. Matrix Z is usually organized so

that all parameters of the first group are included first, then those of the second group.

This organization leads to a block-diagonal structure of var(c) and Z, which eases the

computations. The structure is probably best described by the following example.

Example 3.1 Assume model yki = α + β + ak + bkxki + eki, where i = 1, . . . , nk
and k = 1, . . . ,K. The model can be written as

y = Xb + Zc + e

by defining

y =



y11
y12

...
y1n1

y21
y22

...
y2n2

...
yK1

yK2

...
yKnK



,X =



1 x11

1 x12

...
...

1 y1n1

1 y21
1 y22
...

...
1 y2n2

...
...

1 yK1

1 yK2

...
...

1 yKnK



, b =
[
α
β

]
, e =



e11
e12

...
e1n1

e21
e22

...
e2n2

...
eK1

eK2

...
eKnK



,
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Z =



1 x11 0 0 · · · 0 0
1 x12 0 0 · · · 0 0
...

...
...

...
. . .

...
...

1 y1n1 0 0 · · · 0 0
0 0 1 x21 · · · 0 0
0 0 1 x22 · · · 0 0
...

...
...

...
. . .

...
...

0 0 1 y2n2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 xK1

0 0 0 0 · · · 1 xK2

...
...

...
...

. . .
...

...
0 0 0 0 · · · 1 xKnK



, c =



a1

b1
a2

b2
· · ·
aK
bK


.

The above example showed the matrices for the whole data. Matrices Z and D

consist of blocks, each of which presents a single group. The model for each group can

also be written in matrix a form, as shown in the following example. The model for a

single group is needed in prediction of random effects.

Example 3.2 In example 3.1, the model for a single group is written in matrix form as

yk = Xkb + Zkck + ek

where

yk =


yk1
yk2

...
yknk

 ,Xk =


1 xk1
1 xk2
...

...
1 yknk

 , b =
[
α
β

]
,

ek =


ek1
ek2

...
eknk

 ,Zk =


1 xk1
1 xk2
...

...
1 yknk

 , ck =
[
ak
bk

]
.

Thus, to write a mixed model in a matrix form, the essential task is to be able to

write the model for a single group. The other matrices and vectors for the model of

whole data are then obtained as follows

X =


X1

X2

...
XK

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZK

 c =


c1

c2

...
cK

 e =


e1

e2

...
eK

 (3.7)

The vector of fixed parameters, b, is the same for whole data and a single group.

In the model for a single group,

yk = Xkb + Zkck + ek, (3.8)
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ck, and ek are random vectors. Of the vector of random effects, it is assumed that

ck ∼ Nq(0,Dk), where D is a positive definite matrix. With model (3.3) such

an assumption was specified in (3.4). Of ek, the very general assumption is that

ek ∼ Nnk
(0,Rk), where Rk parameterizes the assumed trends in the conditional

residual variance and dependencies in the conditional residuals within a group. The

usual (starting) hypothesis is that Rk = σ2I , which implies an assumption on un-

correlated conditional residuals with a constant variance. Relaxing this assumption is

possible, for example assumptions on heteroscedastic variance and different autocorre-

lation structures are possible.

The assumptions about the residual error and random effects lead to that

yk ∼ Nnk
(Xkb,ZkDZ ′

k +R)

and

cov(ck, y′k) = DZ′k

These variance-covariance matrices can be easily derived by writing the assumed ex-

pressions for uk into the equations of variance and covariance, and then applying the

rules of chapter 1.

Multiple levels of grouping

Assume that we have two nested levels of grouping, the first (outer) level of grouping

being indexed by k = 1, . . . ,K, and the innermost grouping being indexed by l =

1, . . . , nk. The linear mixed-effects model for group l within group k is written as

ykl = Xklb + Zk,lc
′
k + Zklckl + ekl

where c′k includes the first (outer) level random effects for group k, and ckl the second

(innermost) level random effects for level l within k. Matrices Zk,l and bmZkl are the

corresponding design matrices.

The model for the whole group k is

yk = Xkb + Zkck + ek

where

yk =


yk1
yk2

...
yknk

 ,Xk =


Xk1

Xk2

...
Xknk

 ,

Zk =


Zk,1 Zk1 0 · · · 0
Zk,2 0 Zk1 · · · 0

...
...

...
. . .

...

Zk,nk
0 0

... Zknk

 , ck =


c′k
ck1
ck2

...
cknk


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and the vector of fixed parameters is the same as in the previous model, b. The model

for the whole data can be written as described in equation (3.7)

Example 3.3 Model

hkti = α+ βdkti + ak + bkdkti + akt + bktdkti + ekti,

for time point t within stand k can be written as

hkt = Xktb + Zk,tc
′
k + Zktckt + ekt

by defining

hkt =


hkt1
hkt2

...
hktnkt

 ,Xkt = Zk,t = Zkt =


1 dkt1
1 dkt2
...

...
1 dktnkt

 ,

c′k =
[
ak
bk

]
, ckt =

[
akt
bkt

]
, ekt =


ekt1
ekt2

...
ektnkt


The model for plot k becomes

hk = Xkb + Zkck + ek

where the design matrix for random part and the vector of random effects are

Zk =



1 dk11 1 dk11 0 0 · · · 0 0
1 dk12 1 dk12 0 0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

1 dk1nk1 1 dk1nk1 0 0 · · · 0 0
1 dk21 0 0 1 dk21 · · · 0 0
1 dk22 0 0 1 dk22 · · · 0 0
...

...
...

...
...

...
. . .

...
...

1 dk2nk2 0 0 1 dk2nk2 · · · 0 0
...

...
...

...
...

...
. . .

...
...

1 dknk1 0 0 0 0 · · · 1 dknk1

1 dknk2 0 0 0 0 · · · 1 dknk2

1 dknknknk
0 0 0 0 · · · 1 dknknknk



, bk =



ak
bk
ak1
bk1
ak2
bk2

...
aknk

bknk


,

The general matrix formulation

In all the above cases, the mixed-effects model for the whole data can be written in

form

y = Xb + Zc + e′ (3.9)
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where Xb is the fixed part and Zc + e′ is the random part. By defining that e =

Zc+e′, we see that the mixed-effects model is a special case of the linear model (2.4).

In the mixed-effects model, the residual of the linear model is partitioned into several

terms. Some of these terms are common for for some observations. For example,

the group effects are common to all observations of a specific group. These shared

parts of the residual cause correlation among the residuals of the linear model, e. This

correlation is parameterized into the matrix V through the variance-covariance matrix

of the random effects, D. The variance-covariance matrix of the residual of the linear

model can be computed as

V = var(e)

= var(Zc + e′)

= ZDZ′ + R

Thus, model (3.9) is such a special case of model (2.4), where the variance covariance-

matrix of residuals is specified as

var(e) = V = ZDZ′ + R .

3.2 Estimation

3.2.1 Analysis of variance

The earliest estimation methods of a mixed-effects model are based on an ANOVA-

approach. In the anova approach, the group-effects are first included into the model as

dummy variables, and then the estimates for the variance components were based on

the residual and regression sums of squares, which are divided with the number of ob-

servations and corrected for the degrees of freedom used. The ANOVA approach leads

to unique, unbiased estimators for datasets with equal number of observations in each

group and no missing data. However, problems arise with unbalanced data and miss-

ing observations, and no agreement exists in which estimators should be used in such

cases. Thus, currently the most often applied and most widely accepted methods are

those based on maximum likelihood and restricted (or residual) maximum likelihood.

3.2.2 Maximum Likelihood

The method of maximum likelihood is a straightforward application of what was pre-

sented in section 2.6. One should be aware that it requires the assumption on normality

already in the estimation stage, as does the REML method, too. In the most com-

mon case, an unrestricted positive definite structure is given to the variance-covariance
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matrix for random effects at each level of grouping, and matrix R is defined as the

diagonal matrix σ2I . The ML yields estimates for the variance-covariance parameters

for the random parameters at each level of grouping, for the residual error variance,

and for vector b. Furthermore, the dependence of residuals or heteroscedastic vari-

ance can be modeled by giving a more sophisticated structure for R. An important

result for the ML-method is, that whatever structure V has, the ML-estimates of b are

the GLS estimates, where the required variance-covariance matrix is replaced with the

ML-estimate. A widely known problem with the ML-estimates is that it is downward

biased. The extent of bias can be computed only for some special cases.

3.2.3 Restricted maximum likelihood

The method of restricted maximum likelihood (REML) was presented in section 2.6.

In the REML method, the ML equation includes only the parameters specifying the

random part of the LMM. Thus, REML itself does not involve estimation of b. In-

stead, the estimation of b is conducted by direct application of GLS-method, after the

estimates for the parameters of V are first obtained by REML. In general, REML is

usually preferred over ML because it yields the minimum-variance unbiased estimators

for the variance components in the case of balanced data, which are also the ANOVA-

estimators. However, it is not known if these estimators are unbiased for unbalanced

data, but at least they are less biased than the ML-estimators. Other reasons for pre-

ferring REML over ML were listed in section 2.6. However, as REML itself does not

involve estimation of the fixed parameters, tests for finding appropriate structure for
the fixed part should not be based on REML-likelihood ratio; the ML-estimation can

be used instead. The final model can then be estimated using REML, after appropriate

structure has been found for the fixed part.

3.3 Prediction of random effects

Model estimation yields the estimates for the fixed parameters, those for the variances

and covariances at different levels of grouping, and for the variance of the residual.

However, estimation of the LMM does not yield estimates for the group effects, ck

for groups k = 1, . . . ,K. These effects can, however, be predicted using the Best

Linear Predictor, which was presented for a general case in section 1.6 and is taken

back below. If (
h1

h2

)
∼
[(

µ1

µ2

)
,

(
V1 V12

V ′
12 V2

)]
,

then

BLP (h1) = ĥ1 = µ1 + V12V
−1
2 (h2 − µ2)
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with a prediction variance of

var(ĥ1 − h1) = V1 − V12V
−1
2 V ′

12

Consider the model (3.8) for a single group k. We want to predict the random effects

bk using the observations of yk. Thus, h1 = bk and h2 = yk The required variances

and covariances were given before

V1 = D

V2 = ZkDZ ′
k + R

V12 = DZ ′
k

The BLP of random effects, and their prediction error variance become

b̂k = DZ ′
k (ZkDZ ′

k + R)−1 (yk −Xkb)

var(b̂k − bk) = D −DZ ′
k (ZkDZ ′

k + R)−1
ZkD

Henderson mixed model equations give equivalent equations

b̂k =
(
Z ′
kR

−1Zk + D−1
)−1

Z ′R−1 (yk −Xkb)

var(b̂k − bk) =
(
Z ′
kR

−1Zk + D−1
)−1

(Searle et al. 1992, Lappi 1991, see). The lower form requires inversion of a matrix

of dimension p × p in addition to the inversion of R, which is of dimension nk × nk,

but is usually diagonal. The upper requires the inversion of a non-diagonal matrix of

dimension n× n. Thus, the lower form is computationally better if R is diagonal and

the number of observations is high compared to the number of random parameters.

3.4 Inference and tests

3.4.1 Checking of the assumptions of the mixed model
The model form

With the mixed model, checking that the assumed model form fits to the data is as

important as with the simpler models, too. However, checking the assumptions is not

as simple as it was before. The plot of residuals on all the predictors is a good starting

point to see if the model has a good shape. However, there may also other ways of

checking the fit. an example of such a case is presented in the following example. For

correcting the model shape, the same rules apply as in the case of linear models (see

section 2.4)

Example 3.4 Compare three functions for H-D modeling
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Other assumptions to be checked are, if the assumption of random parameters are re-

alistic. For example, in a variance component model, only the level of the assumed

model is assumed to vary among groups, whereas the model shape is assumed to be the

same. Plots should be used to see if this is a realistic assumption.

Example 3.5 Longitudinal model for H-D curves

Assumptions on the residual variance

A plot of standardized (conditional) residuals on the predicted value should express a

constant variance with no trends. A variance function should be used to homogenize

the residuals, or alternatively, a transformation could be made to the response. The

normality of residuals should be checked, for example, by using q-q plots, as the ML

and REML methods are based on normality. Slight discrepancy from normality is

usually allowed, as no very good methods for normalizing the data have been presented.

Transformations to the response could be used to get the data better met the normality.

However, this results into the bias problem, which was discussed in section 2.4.3.

In a repeated measurements data, lagged residuals could be used to analyze the pos-

sible temporal autocorrelation. In spatial data, covariagrams could be used to analyze

the possible spatial autocorrelation.

Assumptions on the random effects

Also the ransom effects are assumed to have constant variance and normal distribution.

These assumptions should be checked by plotting the BLUPs of random effects against

the predicted value. The normality of random effects should be checked by using q-

q-plots. If several random effects are included at a certain level, the linearity of the

correlation can be checked by plotting the predicted random effects against each other.

The nonlinearity is usually linked with discrepancy from (multi)normality; this results

from that with multinormal distribution, all marginal and joint distributions are normal

and all correlations are linear.

3.4.2 Tests of the model

Tests on the fixed part can be based on the same principles as in the case of linear

model. However, one should keep in mind that LR test for two models with different

fixed effects should be carried out with models estimated by ML, not wit models based

on REML. Assumptions on the random part can be tested with either of the models.
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3.5 Extending the linear mixed model

The assumption of constant variance and independence of residuals can be relaxed

also with the linear mixed-effects-model. In R, the same functions can be used for

specifying the structure for the residual term than wee used with the linear model and

function glm.

3.6 An analysis of H-D curve

3.6.1 Selection of model form

Data on 1678 height-diameter observations for Scots Pine trees from 56 plots in North

Carelia, Finland is analyzed. The data is cross-sectional, so the only cause for hierar-

chy is the organization of data into plots and trees within plots. The analysis has the

following steps

1. Selecting appropriate model form from among four alternatives: Power equation,

Meyer equation, Korf Curve, and Näslunds equation.

2. Fitting a first mixed-effects model, and checking the assumptions on model form

and residual errors, and development of the model to better meet the assump-

tions.

3. Including additional stand-specific covariates to capture part of the between-

stand variation.

4. Demonstrate the use of these two models for prediction when one sample tree

has been measured for diameter and height.

5. Demonstrate the use of these two models for prediction when three sample tree

has been measured for diameter and height.

The R-code of in file examples ch3.R includes the analysis.
First, define the possible functions for the relationship, and find initial estimates for

the parameter values.

> spati<-read.table("c:/laurim/biometria/spati.txt",header=TRUE)
> # Include only pine sample trees
> spati<-spati[spati$pl==1,]
> spati$h2<-spati$h-1.3
>
> # Select appropriate model form from among alternatives:
> # power H=aDˆb
> HDpower<-function(d,a,b) {
+ a*dˆb
+ }
> # Meyer: H=a(1-exp{-bD})
> HDmeyer<-function(d,a,b) {
+ a*(1-exp(-b*d))
+ }
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Figure 3.1: Plot of the data, and the four alternative models with their initial parameter
values.

> # Korf: H=a exp{-bDˆ{-c}}
> HDkorf<-function(d,a,b) {
+ a*exp(-b*dˆ(-1))
+ }
> # Nslund: H=1.3+dˆ2/(a+bd)ˆ2
> HDnaslund<-function(d,a,b) {
+ dˆ2/(a+b*d)ˆ2
+ }
> # We will fit each of these models into the data of each plot using nls and study the residuals
> # to select the best fitting model.
>
>
> # plot the data
> plot(spati$d,spati$h2)
> # manually find starting values for the parameters
> d<-seq(0,50)
> lines(d,HDpower(d,1.9,0.7),lwd=2)
> lines(d,HDmeyer(d,28,0.04),col="red",lwd=2)
> lines(d,HDkorf(d,28,10),col="green",lwd=2)
> lines(d,HDnaslund(d,1.2,0.18),col="blue",lwd=2)

The following code fits each of the four alternative models for each plot. It also
plots the observations of each plot, and adds the fitted curves to the plots.

> # A vector including plot numbers
> plots<-unique(spati$plot)
>
> # do these computations for each plot
> # and plot the models
> korfa<-korfb<-rep(NA,length(plots))
> for (i in 1:length(plots)) {
+ # open a new window at every fourth iteration
+ if (((i-1)%%4)==0) {
+ windows()
+ par(mfcol=c(2,2))
+ }
+ # thisplot will include observations only from i:th plot
+ thisplot<-spati[spati$plot==plots[i],]
+
+ # fit each of the models for each plot using nls
+ fmpower<-nls(h2˜HDpower(d,a,b),
+ data=thisplot,
+ start=list(a=1.9,b=0.7))
+ fmmeyer<-nls(h2˜HDmeyer(d,a,b),
+ data=thisplot,
+ start=list(a=30,b=0.04))
+ # common start values for each plot did not converge for each plot.
+ # That is why startong values are estimated separately for each plot
+ # by fitting a linearized form of the model.
+ # This could be automatized by defining a self-start function.
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+ korfstart<-lm(log(h2)˜I(1/d),data=thisplot)
+ fmkorf<-nls(h2˜HDkorf(d,a,b),
+ data=thisplot,
+ start=list(a=exp(coef(korfstart)[1]),b=-coef(korfstart)[2]))
+ fmnaslund<-nls(h2˜HDnaslund(d,a,b),
+ data=thisplot,
+ start=list(a=1.2,b=0.18))
+
+ # Make a new plot that shows the h-d data of thisparticular plot
+ # and add the fitted lines from each of the four fits into the plot.
+ plot(thisplot$d,thisplot$h2)
+ lines(d,HDpower(d,coef(fmpower)[1],coef(fmpower)[2]), lwd=2)
+ lines(d,HDmeyer(d,coef(fmmeyer)[1],coef(fmmeyer)[2]), col="red", lwd=2)
+ lines(d,HDkorf(d,coef(fmkorf)[1],coef(fmkorf)[2]), col="green",lwd=2)
+ lines(d,HDnaslund(d,coef(fmnaslund)[1],coef(fmnaslund)[2]), col="blue", lwd=2)
+ mtext(c("Power","Meyer","Korf","Nslund"),
+ col=c("black","red","green","blue"),
+ at=seq(min(thisplot$d),max(thisplot$d),length=4))
+
+ # Save the residuals from each of these fits
+ # Note: the columns are automatically created in the first iteration.
+ spati$respow[spati$plot==plots[i]]<-resid(fmpower)
+ spati$resmey[spati$plot==plots[i]]<-resid(fmmeyer)
+ spati$reskorf[spati$plot==plots[i]]<-resid(fmkorf)
+ spati$resnas[spati$plot==plots[i]]<-resid(fmnaslund)
+
+ # add also a column including a plotwise standardized diameter
+ spati$dstd[spati$plot==plots[i]]<-(thisplot$d-mean(thisplot$d))/sd(thisplot$d)
+ }

The following code computes means, standard deviations and standard errors of
residuals for each model. Näslunds model seems to be the best, followed by Korf,
Meyer and Power functions.

> rbind(sd=sd(spati[,c("respow","resmey","reskorf","resnas")]),
+ mean=mean(spati[,c("respow","resmey","reskorf","resnas")]),
+ se=sd(spati[,c("respow","resmey","reskorf","resnas")])/sqrt(dim(spati)[1]))

respow resmey reskorf resnas
sd 1.09239050 0.97568785 0.972231759 0.970056688
mean -0.01628642 -0.01793159 0.009149283 -0.003784412
se 0.02666748 0.02381853 0.023734158 0.023681060

Next, plot the residuals against diameter and standardized diameter to see assess

the fit of each of these models.

# plot the residuals in the standard way
# against tree diameter

windows()
par(mfcol=c(2,2))
plot(spati$d,spati$respow)
abline(0,0)
plot(spati$d,spati$resmey)
abline(0,0)
plot(spati$d,spati$reskorf)
abline(0,0)
plot(spati$d,spati$resnas)
abline(0,0)

# and against standardized d
windows()
par(mfcol=c(2,2))
plot(spati$dstd,spati$respow)
abline(0,0)
plot(spati$dstd,spati$resmey)
abline(0,0)
plot(spati$dstd,spati$reskorf)
abline(0,0)
plot(spati$dstd,spati$resnas)
abline(0,0)

# Residuals against standardized diameter
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Figure 3.2: Data and fitted models for four example plots.
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limits<-quantile(spati$dstd,probs=seq(0,1,0.1))
windows()
par(mfcol=c(2,2))
mywhiskers(spati$dstd,spati$respow,limits=limits,se=FALSE,main="Power")
mywhiskers(spati$dstd,spati$respow,limits=limits,add=TRUE,lwd=2)
abline(0,0)
mywhiskers(spati$dstd,spati$resmey,limits=limits,se=FALSE,main="Meyer")
mywhiskers(spati$dstd,spati$resmey,limits=limits,add=TRUE,lwd=2)
abline(0,0)
mywhiskers(spati$dstd,spati$reskorf,limits=limits,se=FALSE,main="Korf")
mywhiskers(spati$dstd,spati$reskorf,limits=limits,add=TRUE,lwd=2)
abline(0,0)
mywhiskers(spati$dstd,spati$resnas,limits=limits,se=FALSE,main="Nslund")
mywhiskers(spati$dstd,spati$resnas,limits=limits,add=TRUE,lwd=2)
abline(0,0)

# Residuals against raw diameter
limits<-quantile(spati$d,probs=seq(0,1,0.1))
windows()
par(mfcol=c(2,2))
mywhiskers(spati$d,spati$respow,limits=limits,se=FALSE,main="Power")
mywhiskers(spati$d,spati$respow,limits=limits,add=TRUE,lwd=2)
abline(0,0)
mywhiskers(spati$d,spati$resmey,limits=limits,se=FALSE,main="Meyer")
mywhiskers(spati$d,spati$resmey,limits=limits,add=TRUE,lwd=2)
abline(0,0)
mywhiskers(spati$d,spati$reskorf,limits=limits,se=FALSE,main="Korf")
mywhiskers(spati$d,spati$reskorf,limits=limits,add=TRUE,lwd=2)
abline(0,0)
mywhiskers(spati$d,spati$resnas,limits=limits,se=FALSE,main="Nslund")
mywhiskers(spati$d,spati$resnas,limits=limits,add=TRUE,lwd=2)
abline(0,0)

The plots are shown in figures 3.3 and 3.4. Residuals against diameter do not show

any trend, whereas plotting against standardized diameter shows that Power and Meyer

equations are not flexible enough for our purposes. They lead underestimation of height

for medium sized trees of a stand, and overestimation of height for largest and smallest

trees. No difference can be seen between Korf and Näslunds curves. Plots 3.5 and 3.6

show the corresponding plots from mywhiskers. I selected Korf curve, but Näslunds

curve could have been as good or even a better alternative.

3.6.2 Fitting the linear mixed-effects model

The previously shown computations were carried out in the original scale using the

nonlinear regression approach. However, many modeling tasks become much easier in

the linear scale, even though it leads to biased predictions in nonlinear scale. However,

we select a linearized model and then do the normality-based bias correction. The lin-

earized Korf model with random effects for both a and be is obtained using logarithmic

transformation as

ln(hki − 1.3) = α+ ak − (β + bk)
1
d

The constant of the linearized model, α + ak, is obtained by making the logarithmic
transformation to the original scale parameter. The following code fits the linearized
korf curve to each plot, and plots the obtained parameters. The plots are shown in
figure 3.7. The distribution of the stand-specific parameters seems not to be normal,
and the correlation shows a nonlinear trend. However, we do not have good tools to fix
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Figure 3.3: Residuals against diameter.
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Figure 3.4: Residuals against standardized diameter.
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Figure 3.6: Residuals against standardized diameter.
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these departures, and we will proceed with this model, even though we are aware that
the assumptions are not very well met.
> korfpar<-data.frame(a=rep(NA,length(plots)),b=rep(NA,length(plots)))
> for (i in 1:length(plots)) {
+
+ # thisplot will include observations only from i:th plot
+ thisplot<-spati[spati$plot==plots[i],]
+
+ lmkorf<-lm(log(h2)˜I(1/d),data=thisplot)
+ korfpar[i,]<-c(1,-1)*coef(lmkorf)
+ }
> head(korfpar)

a b
1 3.107455 8.633308
2 2.981028 6.266065
3 2.753103 4.404059
4 2.964051 6.243494
5 3.051922 5.531834
6 3.226972 7.581148
> # Plot the plot-specific estimates
> windows(4,7)
> par(mfcol=c(3,2))
> hist(korfpar$a)
> qqnorm(korfpar$a,main="a")
> hist(korfpar$b)
> qqnorm(korfpar$b,main="b")
> plot(korfpar)

Next, we will fit the mixed-effects model into the data.
> # This model can be fitted using function lme in package nlme (OLD)
> library(nlme)
> lmm1<-lme(log(h2)˜I(1/d),random=˜1+I(1/d)|plot,data=spati)
> lmm1
Linear mixed-effects model fit by REML

Data: spati
Log-restricted-likelihood: 639.0039
Fixed: log(h2) ˜ I(1/d)

(Intercept) I(1/d)
2.807888 -6.279249

Random effects:
Formula: ˜1 + I(1/d) | plot
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 0.4922689 (Intr)
I(1/d) 2.2729989 -0.875
Residual 0.1472408

Number of Observations: 1678
Number of Groups: 56
>
> # Explore object lmm1
> attributes(lmm1)
$names
[1] "modelStruct" "dims" "contrasts" "coefficients"
[5] "varFix" "sigma" "apVar" "logLik"
[9] "numIter" "groups" "call" "terms"
[13] "method" "fitted" "residuals" "fixDF"
[17] "na.action" "data"

$class
[1] "lme"

Compared to the residual variation, the between-stand variation is high, and the

need for random effects is obvious. We could also make a formal test by fitting a

restricted model and test if the full model is significantly better than the restricted

model.

Next, study if the assumptions of the model are met. We assumed
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Figure 3.7: Plots of stand-specific parameter estimates.
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1. The dependence of log(H-1.3) on D can be described using korf curve

2. Residuals have constant variance

3. Residuals are normally distributed

4. Random effects are multinormally distributed

The validity of these assumptions are studied in the following code. The resulting plots
are shown in figure 3.8. The plots show

# Assumption 1: model form
windows(4,8)
par(mfcol=c(4,2))
plot(spati$d,resid(lmm1),col="red")
mywhiskers(spati$d,resid(lmm1),add=TRUE,lwd=2)
mywhiskers(spati$d,resid(lmm1),se=FALSE,add=TRUE)
abline(0,0)
# Model seems to fit fairly well.

# Residual variance has a decreasing trend:
plot(fitted(lmm1),resid(lmm1))
mywhiskers(fitted(lmm1),resid(lmm1),add=TRUE,se=FALSE)

# Normality of residuals
#qqnorm(resid(lmm2,type="pearson"))
#abline(0,1)
qqnorm(resid(lmm1,type="pearson"))
abline(0,1)
# The residuals have heavy tails!

# Normality of random effects
qqnorm(unlist(random.effects(lmm1)[1]))
qqnorm(unlist(random.effects(lmm1)[2]))
plot(unlist(random.effects(lmm1)[1]),unlist(random.effects(lmm1)[2]))

The following code makes a plot of the fixed part and plot-specific models. The

plot is shown in Figure 3.9.

> windows()
> plot(spati$d,log(spati$h2),col="red")
> for (i in 1:56) {
+ thisplot<-spati[spati$plot==plots[i],]
+ d<-seq(min(thisplot$d),max(thisplot$d),length=20)
+ lines(d,coef(lmm1)[i,1]+coef(lmm1)[i,2]/d)
+ }
> d<-seq(min(spati$d),max(spati$d),length=20)
> lines(d,fixef(lmm1)[1]+fixef(lmm1)[2]/d,lwd=3,col="blue")

We fit a new model with heteroscedastic variances. The plot looks better (Figure
3.10), and the model fits significantly better.

> lmm1b<-lme(log(h2)˜I(1/d),
+ random=˜1+I(1/d)|plot,
+ data=spati,
+ weights=varPower(-0.5,˜d))
>
>
> # Residual variance looks better
> plot(fitted(lmm1b),resid(lmm1b,type="pearson"))
> mywhiskers(fitted(lmm1b),resid(lmm1b,type="pearson"),add=TRUE,se=FALSE)
>
> # The model also fits better
> anova(lmm1,lmm1b)

Model df AIC BIC logLik Test L.Ratio p-value
lmm1 1 6 -1266.008 -1233.463 639.0039
lmm1b 2 7 -1619.514 -1581.545 816.7572 1 vs 2 355.5065 <.0001
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Figure 3.8: Diagnostoic plots on lmm1.



118 CHAPTER 3. LINEAR MIXED MODELS

●

●●
●

●●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●●

●

●
●●●

●

●●

●
●●

●
●

●●

●

●

●
●

●●
●

●
●●

●
●●

●

●●
●

●●
●

●
●

●

●

●

●
●

●

●●

●●
●

●
●●●

●

●

●

●

●

●●

●

●
●●

●
●●

●

●
●

●

●

●
●

●
●

●

●●
●

●●●

●
●

●●
●

●●●●●
●

●
●

●
●

●
●

●
●

●

●●

●

●●

●

●●
●
●●●

●●●
●

●

●●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●● ●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●
●●

●●●●●
●

●
●

●
●

●●

●

●
●

●●●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●●●

●
●

●

●

●
●

●
●

●●

●●

●
●●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●●●●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●●●●

●

●

●

●
●●

●

●●

●

●
●

●
●

●
●

●

●

●●
●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●
●

●●

●
●

●

●

●
●●● ●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●●

●●

●●
●

●●

●

●
●

●

●●
●

●●

●

● ●●

●

●

●

●

●

●●

●

●
●
●●

●●●
●

●●
●
●

●

●

●●

●

●
●●
●
●

●●

●

●●
●●

●

●●●

●●

●●●

●
●●

●
●

●
●

●

●

●
●

●
●

●●●
●●●

●
●

●●

●●●
●

●

●
●

●

●

●●
●●
●

●

●

●
●

●●

●●
●●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●●
●
●

●

●●
●

●

●

●
●

●

●
●
●

●●
●

●
●●

●

●
●●
●

●●●●

●

●●●
●●

●

●●●

●

●

●
●

●
●

●

●●
●
●●

●

●
●

●

●

●
●●●●●

●
●

●

●

●

●●

●

●●

●

●●

●
●●

●

●●
●

●

●
●●
●
●

●●
●

●

●

●●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●
●
●

●
●●

●●●

●
●●

●●
●

●●

●●
●●●
●●●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●
●

●
●
●

●
●

●

●
●

●
●
●●

●
●

●
●●●

●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●●●

●

●

●
●●

●

●
●●
●

●●
●●

●
●●

●
●

●

●

●

●

●

●

●●
●●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●
●

●

●

●

●

●
●
●

●●●

●

●

●
●

●
●●●●●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●●
●

●
●

●

●●●
●

●
●●

●

●●

●

●●
●●

●
●●
●●●
●

●
●●●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●●●●

●
●●

●

●
●

●

●

●

●●●
●

●

●

●
●●

●

●●
●●
● ●●
●

●
●●●

●
●●
●

●

●●
●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

● ●
●

●
●
●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●
●

●●●●●●

●●●
●
●●
●
●

●●

●●●
●
●●

●

●●

●●
●

●

●

●

●
●
●

●

●●

●
●
●

●●
●●

●

●
●●●

●
●

●●
●●●

●
●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●●●

●●
●●

●●

●
●

●

●
●

●

●● ●
●
●

●●

●

●

●●

●

●●●

●

●
●

● ●

●

●

●●●
●●

●
●●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●
●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●

●
●
●●
●

●●

●
●
●

●

●

●
●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●●
●●

●
●

●

●
●

●
●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 10 20 30 40 50

0
1

2
3

spati$d

lo
g(

sp
at

i$
h2

)

Figure 3.9: Data (red), marginal (blue) and conditional (black) curves.
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Figure 3.10: Residuals of model fmm1b.
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Assume we want to model the dependence in stand specific values of a and by

using some predictors. First take a look on how these parameters depend on stand

characteristics. These plots are made using the following commands. The plots are

shown in figures 3.11 and 3.12. We see that the random parameters clearly depend on

stand characteristics. The dependence seems to be strongest for mean diameter Dg. For

this covariate, the relationship between a is nonlinear, but the relationship with b looks

fairly linear. A logarithmic transformation in Dg seems to linearize the relationship

fairly well (Figure 3.13)

plotdata<-cbind(unique(spati[,c("plot","X","Y","N","G","Dg","Tg")]),korfpar)
windows(4,7)
par(mfcol=c(3,2))
plot(plotdata$X,plotdata$a)
plot(plotdata$Y,plotdata$a)
plot(plotdata$N,plotdata$a)
plot(plotdata$G,plotdata$a)
plot(plotdata$Dg,plotdata$a)
plot(plotdata$Tg,plotdata$a)

windows(4,7)
par(mfcol=c(3,2))
plot(plotdata$X,plotdata$b)
plot(plotdata$Y,plotdata$b)
plot(plotdata$N,plotdata$b)
plot(plotdata$G,plotdata$b)
plot(plotdata$Dg,plotdata$b)
plot(plotdata$Tg,plotdata$b)

> windows()
> plot(log(plotdata$Dg),plotdata$a)
> abline(lm(a˜log(Dg),data=plotdata))

Thus, our new model would be

ln(hki) = α0 + α1 ∗ ln(Dg) + ak + (β0 + βDg + bk) ∗ (1/dki) + eki

This model is fitted using the following code. Note that we refit also the restricted
model using ML, because we are going to make a LR-test on the fixed effects. The
new relaxed model is significantly better than the old one.

> lmm4<-lme(log(h2)˜I(1/d),
+ random=˜1+I(1/d)|plot,
+ data=spati,
+ weights=varPower(-0.5,˜d),
+ method="ML")
>
>
> lmm4b<-lme(log(h2)˜I(1/d)+log(Dg)+I(1/d):Dg,
+ random=˜1+I(1/d)|plot,
+ data=spati,
+ weights=varPower(-0.5,˜d),
+ method="ML")
>
> # Make the LR test
> anova(lmm4,lmm4b)

Model df AIC BIC logLik Test L.Ratio p-value
lmm4 1 7 -1624.754 -1586.776 819.3768
lmm4b 2 9 -1728.881 -1680.053 873.4406 1 vs 2 108.1276 <.0001

The next question is, whether including additional predictors would improve the
model. Let us add stand age as an additional predictor and do the test. The additional
predictor provides no improvement to the model. The explanation can be seen by
plotting the stand effects of model lmm4b against stand-specific predictors (Figures
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Figure 3.11: Parameter a against stand variables.
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Figure 3.12: Parameter b against stand variables.
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Figure 3.13: Dependence of log(b) on Dg.

3.14 and 3.15). There seems not to be any unexplained trend in them, and the trends that
were seen in plots 3.11 and 3.12 were caused by correlations among stand variables.

> lmm4c<-lme(log(h2)˜I(1/d)+log(Dg)+Tg+I(1/d):Dg,
+ random=˜1+I(1/d)|plot,
+ data=spati,
+ weights=varPower(-0.5,˜d),
+ method="ML")
>
> anova(lmm4b,lmm4c)

Model df AIC BIC logLik Test L.Ratio p-value
lmm4b 1 9 -1728.881 -1680.053 873.4406
lmm4c 2 10 -1726.890 -1672.637 873.4452 1 vs 2 0.009259103 0.9233

Thus, we refit the final model using REML and save the two final models into

objects fm1 and fm2. Furthermore, we plot the fixed parts of the model (Figure 3.17),

as well as the modeled dependence of a and b on Dg (Figure 3.16).

# Refit lmm4b with REML

lmm4b<-lme(log(h2)˜I(1/d)+log(Dg)+I(1/d):Dg,
random=˜1+I(1/d)|plot,
data=spati,
weights=varPower(-0.5,˜d),
method="REML")

# Final models are lmm1b and lmm4b
fm1<-lmm1b
fm2<-lmm4b

# Plot the plot-specific estimates of a, and their estimates
windows(3,5)
par(mfcol=c(2,1))
plot(plotdata$Dg,plotdata$a)
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Figure 3.14: Stand effects a of lmm4b against stand variables.
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Figure 3.15: Stand effects b of lmm4b against stand variables.
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Figure 3.17: The fixed part of fm1 and that of fm2 with three different values of Dg

Dg<-seq(5,40)
lines(Dg,fixed.effects(fm2)[1]+fixed.effects(fm2)[3]*log(Dg))
plot(plotdata$Dg,plotdata$b)
lines(Dg,-fixed.effects(fm2)[2]-fixed.effects(fm2)[4]*Dg)

# Plot the data and the fixed part of the model
windows()
plot(spati$d,log(spati$h2))
d<-seq(0,50)
lines(d,cbind(1,1/d)%*%fixed.effects(fm1),

type="l",col="green",lwd=2)
text(40,cbind(1,1/40)%*%fixed.effects(fm1),

"Fixed part of model 1",pos=3,col="green")
Dg<-10
lines(d,cbind(1,1/d,log(Dg),Dg/d)%*%fixed.effects(fm2),

type="l",col="red",lwd=2)
text(40,cbind(1,1/40,log(Dg),Dg/40)%*%fixed.effects(fm2),

"Fixed part of model 1 for Dg=10",pos=3,col="red")
Dg<-20
lines(d,cbind(1,1/d,log(Dg),Dg/d)%*%fixed.effects(fm2),

type="l",col="red",lwd=2)
text(40,cbind(1,1/40,log(Dg),Dg/40)%*%fixed.effects(fm2),

"Fixed part of model 1 for Dg=20",pos=3,col="red")
Dg<-30
lines(d,cbind(1,1/d,log(Dg),Dg/d)%*%fixed.effects(fm2),

type="l",col="red",lwd=2)
text(40,cbind(1,1/40,log(Dg),Dg/40)%*%fixed.effects(fm2),

"Fixed part of model 1 for Dg=30",pos=3,col="red")

The same diagnostic plots were plotted for the model including Dg as a predictor

(Figure 3.18) than for the model without Dg (Figure 3.8). The assumptions about

normality seem to be better met when the nonlinear dependence of a on Dg has been

modeled.
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Figure 3.18: Diagnostic plots from model fm2.
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Figure 3.19: Conditional predictions from model fm2 (black) and fm2 (green).

As a final plot of the model, Figure 3.19 shows conditional predictions (i.e., those

with stand effects predicted for the modeling data) for both models. The conditional

models are very close to each other. Further analysis could be done on which of the

models is better.
Figure 3.19 was generated using code

windows()
plot(spati$d,log(spati$h2),col="red")
for (i in 1:56) {

thisplot<-spati[spati$plot==plots[i],]
d<-seq(min(thisplot$d),max(thisplot$d),length=20)
lines(d,cbind(1,1/d,log(thisplot$Dg[1]),thisplot$Dg[1]/d)%*%t(coef(fm2)[i,]))
}

for (i in 1:56) {
thisplot<-spati[spati$plot==plots[i],]
d<-seq(min(thisplot$d),max(thisplot$d),length=20)
lines(d,coef(fm1)[i,1]+coef(fm1)[i,2]/d,col="green",lty="dashed")
}

3.6.3 Model application

A very useful application of the linear mixed-effects model is using it for prediction.

In such case, we can use either marginal prediction, i.e., the fixed part only. However,

if we have measurements of tree height and diameter available from even one sample

tree, we can make conditional, stand specific prediction by predicting the stand effects

of our model for the stand in hand. In the following code, we make predictions

• for fm1 using one measured sample tree
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• for fm2 using one measured sample tree

• for fm1 using three measured sample trees

• for fm1 using three measured sample trees

The predictions of ln(h − 1.3) are a straightforward application of the best lin-

ear predictor. Also the conditional predictions plotted in Figure 3.19 utilize the same

predictors, but they are carried out in R.

In mixed model, we estimated the fixed parameters and variance components. We

are often interested also in the random effects. They are predicted using the BLP or

BLUP. For the plots of the data, R has calculated them. They can be studied using

random.effects() or ranef(). However, a useful situation is that we want to predict the

random effects for a plot that was not included in the data. For example, we may

have one tree height measured for one stand, and we want to utilize that information

in predicting the HD-curve for that stand. First, we assume that from a stand with

Dg = 10, one tree with d = 12 and h = 10 has been observed. We first specify the

vectors and matrices for BLP, and then compute the BLP.

> hobs<-10
> dobs<-12
> # To predict random effects of model 1, we use BLP with
> # h1=c(a_k,b_k)
> # h2=the observed ln(height-1.3)=ln(8.7)= 2.163323
> h2<-log(hobs-1.3)
> # the expectations are
> # mu1=c(0,0)
> mu1<-c(0,0)
> # mu2=the fixed part of the model for d=12
> mu2<-c(1,1/dobs)%*%fixed.effects(fm1)
> # V1 = the variance-covariance matrix of random effects
> V1<-D<-getVarCov(fm1)
> # V2 = the variance-covariance matrix of heights, i.e., ZDZ’+R,
> # where D = V1
> Z<-cbind(1,1/dobs)
> rho<-attributes(fm1$apVar)$Pars[4]
> sigma<-fm1$sigma
> R<-sigmaˆ2*dobsˆ(2*rho)
> V2<-Z%*%V1%*%t(Z)+R
> V12<-V1%*%t(Z)
> h2
[1] 2.163323
> mu1
[1] 0 0
> mu2

[,1]
[1,] 2.292262
> V1
Random effects variance covariance matrix

(Intercept) I(1/d)
(Intercept) 0.23954 -0.98661
I(1/d) -0.98661 5.49210

Standard Deviations: 0.48942 2.3435
> V2

[,1]
[1,] 0.1268992
> V12

[,1]
(Intercept) 0.1573194
I(1/d) -0.5289329
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Figure 3.20: Local and population-level curve for the example stand in logarithmic
scale.

>
> # The blup of random effects is
> h1<-bhat<-V12%*%solve(V2)%*%(h2-mu2)
> h1

[,1]
(Intercept) -0.1598475
I(1/d) 0.5374327
> fixef(fm1)+h1

[,1]
(Intercept) 2.670914
I(1/d) -5.924571

Thus, the intercept (a) for this particular stand is α + 0.157 = 2.97 and the shape

parameter is β + 0.529 = 5.925. The localized, (or calibrated) conditional curve for

this plot is shown in Figure 3.20.

# plot the localized or calibrated H-D curve.
# Save the predictions to vectors
# pred.f - logarithmic prediction based on the fixed part only
# pred.fr - logarithmic prediction based on fixed and random parts
d<-seq(1,50)
plot(d,pred.f<-cbind(1,1/d)%*%fixed.effects(fm1),type="l",col="green",lwd=2)
points(dobs,h2)
lines(d,pred.fr<-cbind(1,1/d)%*%(fixed.effects(fm1)+bhat),type="l",col="green",lwd=2)

# The local curve almost passes through the observed height. Why?
> cbind(1,1/12)%*%(fixed.effects(fm1)+bhat)

[,1]
[1,] 2.1772
> h2
[1] 2.163323
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Figure 3.21: Local (solid) and population-level (dashed) curve for the example stand
in original scale.

Next, we want to make predictions in the original scale. A bias correction based

on normality of logarithmic residuals is applied by adding half of the prediction er-

ror variance into the predictions before applying the exponential transformation. The

following code makes the computations and produces the plot shown in figure 3.21.

# Transformation to the original scale.
# Half of the prediction variance needs to be added before back-transformation.
# 1. The prediction based on fixed and random parts
# The prediction errors of random parameters are
> # Transformation to the original scale.
> # Half of the prediction variance needs to be added before back-transformation.
> # 1. The prediction based on fixed and random parts
> # The prediction errors of random parameters are
> varb<-V1-V12%*%solve(V2)%*%t(V12)
> varb
Random effects variance covariance matrix

(Intercept) I(1/d)
(Intercept) 0.044505 -0.33088
I(1/d) -0.330880 3.28740

Standard Deviations: 0.21096 1.8131
> V1
Random effects variance covariance matrix

(Intercept) I(1/d)
(Intercept) 0.23954 -0.98661
I(1/d) -0.98661 5.49210

Standard Deviations: 0.48942 2.3435
> Z0<-cbind(1,1/d)
> R0<-sigmaˆ2*dˆ(2*rho)
> var.lnh2<-Z0%*%varb%*%t(Z0)+diag(R0)
> hpred.fr<-1.3+exp(pred.fr+0.5*diag(var.lnh2))
>
> # 2. The prediction based on fixed part only
> var.lnh2<-Z0%*%D%*%t(Z0)+diag(R0)
> hpred.f<-1.3+exp(pred.f+0.5*diag(var.lnh2))
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>
> plot(d,hpred.f,type="l",lwd=2,lty="dashed")
> lines(d,hpred.fr,lwd=2)
> points(dobs,hobs)

The same computations were made using the model with Dg as a predictor. The
resulting figure in original scale is shown in Figure 3.22. Even though there is a huge
difference in the fixed parts of the model, the one sample tree moves the local curves
fairly close to each other.

> # Let us make the corresponding predictions using fm2
> Dg<-10
> fixef(fm2)
(Intercept) I(1/d) log(Dg) I(1/d):Dg
-0.1187020 -1.4058238 1.0464768 -0.2791521
> mu2<-c(1,1/dobs,log(Dg),Dg/dobs)%*%fixed.effects(fm2)
>
> # V1 = the variance-covariance matrix of random effects
> V1<-D<-getVarCov(fm2)
> # V2 = the variance-covariance matrix of heights, i.e., ZDZ’+R,
> # where D = V1
> Z<-cbind(1,1/dobs)
> rho<-attributes(fm2$apVar)$Pars[4]
> sigma<-fm2$sigma
> R<-sigmaˆ2*dobsˆ(2*rho)
> V2<-Z%*%V1%*%t(Z)+R
> V12<-V1%*%t(Z)
>
> # The blup of random effects is
> bhat<-V12%*%solve(V2)%*%(h2-mu2)
>
> # plot the localized or calibrated H-D curve.
> # Save the predictions to vectors
> # pred.f - logarithmic prediction based on the fixed part only
> # pred.fr - logarithmic prediction based on fixed and random parts
> d<-seq(1,50)
> plot(d,pred.f2<-cbind(1,1/d,log(Dg),Dg/d)%*%fixed.effects(fm2),type="l",col="green",lwd=2)
> points(dobs,h2)
> lines(d,pred.fr2<-cbind(1,1/d,log(Dg),Dg/d)%*%(fixed.effects(fm2)+c(bhat,0,0)),type="l",col="green",lwd=2)
>
> # The local curve does not pass that close to the observed height. Why?
> cbind(1,1/12,log(Dg),Dg/12)%*%(fixed.effects(fm2)+c(bhat,0,0))

[,1]
[1,] 2.093866
> h2
[1] 2.163323
>
> # Transformation to the original scale.
> # Half of the prediction variance needs to be added before back-transformation.
> # 1. The prediction based on fixed and random parts
> # The prediction errors of random parameters are
> varb<-V1-V12%*%solve(V2)%*%t(V12)
> varb
Random effects variance covariance matrix

(Intercept) I(1/d)
(Intercept) 0.020079 -0.12404
I(1/d) -0.124040 1.44110

Standard Deviations: 0.1417 1.2005
> V1
Random effects variance covariance matrix

(Intercept) I(1/d)
(Intercept) 0.042251 -0.13301
I(1/d) -0.133010 1.44470

Standard Deviations: 0.20555 1.202
> Z0<-cbind(1,1/d)
> R0<-sigmaˆ2*dˆ(2*rho)
> var.lnh2<-Z0%*%varb%*%t(Z0)+diag(R0)
> hpred.fr2<-1.3+exp(pred.fr2+0.5*diag(var.lnh2))
>
> # 2. The prediction based on fixed part only
> var.lnh2<-Z0%*%D%*%t(Z0)+diag(R0)
> hpred.f2<-1.3+exp(pred.f2+0.5*diag(var.lnh2))
>
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Figure 3.22: Local (solid) and population-level (dashed) curve for the example stand
in original scale for fm1 (black) and fm2 (red).

> plot(d,hpred.f,type="l",lwd=2,lty="dashed")
> lines(d,hpred.fr,lwd=2)
> lines(d,hpred.f2,type="l",lwd=2,lty="dashed",col="red")
> lines(d,hpred.fr2,lwd=2,col="red")
> points(dobs,hobs)

Finally, we repeat the prediction using three sample trees. The commands are

shown below. The plot of local curves from both models is shown in figure 3.23

> # EXAMPLE 2 Three trees
> # Assume that from a stand with Dg=10, three trees with d=c(5,9,12), and and h=10 have been observed.
> hobs<-c(6,8,10)
> dobs<-c(5,9,12)
> # To predict random effects of model 1, we use BLP with
> # h1=c(a_k,b_k)
> # h2=the observed ln(height-1.3)=ln(8.7)= 2.163323
> h2<-log(hobs-1.3)
> # the expectations are
> # mu1=c(0,0)
> mu1<-c(0,0)
> # mu2=the fixed part of the model for d=12
> mu2<-cbind(1,1/dobs)%*%fixed.effects(fm1)
> # V1 = the variance-covariance matrix of random effects
> V1<-D<-getVarCov(fm1)
> # V2 = the variance-covariance matrix of heights, i.e., ZDZ’+R,
> # where D = V1
> Z<-cbind(1,1/dobs)
> rho<-attributes(fm1$apVar)$Pars[4]
> sigma<-fm1$sigma
> R<-diag(sigmaˆ2*dobsˆ(2*rho))
> V2<-Z%*%V1%*%t(Z)+R
> V12<-V1%*%t(Z)
>
> # The blup of random effects is
> bhat<-V12%*%solve(V2)%*%(h2-mu2)
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Figure 3.23: Local (solid) and population-level (dashed) curve for the example stand
in original scale for fm1 (black) and fm2 (red).

>
> # plot the localized or calibrated H-D curve.
> # Save the prediictions to vectors
> # pred.f - logarithmic prediction based on the fixed part only
> # pred.fr - logarithmic prediction based on fixed and random parts
> d<-seq(1,50)
> plot(d,pred.f<-cbind(1,1/d)%*%fixed.effects(fm1),type="l",col="green",lwd=2)
> points(dobs,h2)
> lines(d,pred.fr<-cbind(1,1/d)%*%(fixed.effects(fm1)+bhat),type="l",col="green",lwd=2)
>
>
> # Transformation to the original scale.
> # Half of the prediction variance needs to be added before back-transformation.
> # 1. The prediction based on fixed and random parts
> # The prediction errors of random parameters are
> varb<-V1-V12%*%solve(V2)%*%t(V12)
> varb
Random effects variance covariance matrix

(Intercept) I(1/d)
(Intercept) 0.033286 -0.22755
I(1/d) -0.227550 1.88180
Standard Deviations: 0.18244 1.3718

> V1
Random effects variance covariance matrix

(Intercept) I(1/d)
(Intercept) 0.23954 -0.98661
I(1/d) -0.98661 5.49210

Standard Deviations: 0.48942 2.3435
> Z0<-cbind(1,1/d)
> R0<-sigmaˆ2*dˆ(2*rho)
> var.lnh2<-Z0%*%varb%*%t(Z0)+diag(R0)
> hpred.fr<-1.3+exp(pred.fr+0.5*diag(var.lnh2))
>
> # 2. The prediction based on fixed part only
> var.lnh2<-Z0%*%D%*%t(Z0)+diag(R0)
> hpred.f<-1.3+exp(pred.f+0.5*diag(var.lnh2))
>
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> plot(d,hpred.f,type="l",lwd=2,lty="dashed")
> lines(d,hpred.fr,lwd=2)
> points(dobs,hobs)
>
> # Let us make the corresponding predictions using fm2
> Dg<-10
> mu2<-cbind(1,1/dobs,log(Dg),Dg/dobs)%*%fixed.effects(fm2)
>
> # V1 = the variance-covariance matrix of random effects
> V1<-D<-getVarCov(fm2)
> # V2 = the variance-covariance matrix of heights, i.e., ZDZ’+R,
> # where D = V1
> Z<-cbind(1,1/dobs)
> rho<-attributes(fm2$apVar)$Pars[4]
> sigma<-fm2$sigma
> R<-diag(sigmaˆ2*dobsˆ(2*rho))
> V2<-Z%*%V1%*%t(Z)+R
> V12<-V1%*%t(Z)
>
> # The blup of random effects is
> bhat<-V12%*%solve(V2)%*%(h2-mu2)
>
> # plot the localized or calibrated H-D curve.
> # Save the prediictions to vectors
> # pred.f - logarithmic prediction based on the fixed part only
> # pred.fr - logarithmic prediction based on fixed and random parts
> d<-seq(1,50)
> plot(d,pred.f2<-cbind(1,1/d,log(Dg),Dg/d)%*%fixed.effects(fm2),type="l",col="green",lwd=2)
> points(dobs,h2)
> lines(d,pred.fr2<-cbind(1,1/d,log(Dg),Dg/d)%*%(fixed.effects(fm2)+c(bhat,0,0)),type="l",col="green",lwd=2)
>
> # Transformation to the original scale.
> # Half of the prediction variance needs to be added before back-transformation.
> # 1. The prediction based on fixed and random parts
> # The prediction errors of random parameters are
> varb<-V1-V12%*%solve(V2)%*%t(V12)
> varb
Random effects variance covariance matrix

(Intercept) I(1/d)
(Intercept) 0.017626 -0.11147
I(1/d) -0.111470 1.00390

Standard Deviations: 0.13276 1.0019
> V1
Random effects variance covariance matrix

(Intercept) I(1/d)
(Intercept) 0.042251 -0.13301
I(1/d) -0.133010 1.44470

Standard Deviations: 0.20555 1.202
> Z0<-cbind(1,1/d)
> R0<-sigmaˆ2*dˆ(2*rho)
> var.lnh2<-Z0%*%varb%*%t(Z0)+diag(R0)
> hpred.fr2<-1.3+exp(pred.fr2+0.5*diag(var.lnh2))
>
> # 2. The prediction based on fixed part only
> var.lnh2<-Z0%*%D%*%t(Z0)+diag(R0)
> hpred.f2<-1.3+exp(pred.f2+0.5*diag(var.lnh2))
>
> plot(d,hpred.f,type="l",lwd=2,lty="dashed")
> lines(d,hpred.fr,lwd=2)
> lines(d,hpred.f2,type="l",lwd=2,lty="dashed",col="red")
> lines(d,hpred.fr2,lwd=2,col="red")
> points(dobs,hobs)

3.7 Exercises

1. Show that in the linear mixed-effects model yk = Xkb+Zkck+ek, var(yk) =

ZkDZ ′
k + R and cov(ck,y′k) = DZ ′

k.

2. Perform similar analysis as we did in the last section of this chapter using spruce
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dataset from file spruce.txt. The data structure is similar to the pine data

used in the analysis.

(a) Analyse possible model shapes.

(b) Develop and fit appropriate linear mixed-effects model. Report different

stages of the modeling work and justify the choices you have made.

(c) File sprucestand.txt includes 60 measured height diameter pairs from

a stand that was not included in the modeling data. Select randomly (i) one

sample tree and (ii) five sample trees from the example stand, and compute

the stand effects of your model. Plot all the data of the example stand. Add

to the plot (i) the prediction of the fixed part (ii) conditional (localized,

calibrated) prediction based on the one sample tree, (iii) the conditional

(localized, calibrated) prediction based on the five sample trees, and (iv)

mark the sample trees utilized in prediction.

3. File hdmod.R includes functions that can be used for easy application of the

longitudinal height models of (Mehtätalo 2004) and (Mehtätalo 2005).

(a) Run the code using the measurements given in the example at the end of

the file.

(b) Use the model for prediction for a pine stand stand with DGM=30 cm, and

two sample trees measured 10 years ago. At that time, DGM was 22 cm,

and the measured diameters were 15 and 22 cm, and the corresponding

heights were 14 and 19 meters.

(c) Plot the fixed part predictions, and localized H-D curves 10 years before

and now.

4. Using plots 1-16 of data pinevol, analyze the dependence of tree volume on

diameter. Use the fitted model for prediction for plot 51. Some help for this data

can be found in Lappi et al. (2006).



Chapter 4

Generalized linear models

The linear mixed-effects model assume normality of the response. With the linear

(fixed-effects) model, normality is needed for the test. However, the response may also

have some other distribution. For example, it may be binary: dead or alive, success or

failure. Or it my be count: e.g., number of dead trees within a plot. Furthermore, the

diameter of a tree within a stand or plot may be assumed to have a Weibull distribution.

Even in those cases, the linear model may lead to fairly good model. However, a

better justified model is obtained through generalized linear model (GLM). Note the

distinction between terms GLS and GLM. They have nothing in common, except for

the two first letters.

The generalized linear models are closely related to fitting assumed distributions

to data using the method of maximum likelihood. Generalized linear model actually

means just fitting the assumed distribution to the data using the maximum likelihood.

The only difference to the examples of section 1.5.1 is that in GLM, the parameter(s)

of the assumed distribution, or some functions of them, are written as a linear function

of predictors, instead of assuming a common value for the whole data. To ensure that

the predicted parameter is always within the support (e.g, probability is between 0 and

12, or the expected number of stems is positive), a link function is used to link a linear

function of predictors to the parameter to be modeled. This link has exactly the same

idea as we had in example 1.30, where the parameters of a Weibull-distribution were

restricted to be above 0 by using a log link.

4.1 Formulation of the LM as a GLM

With the linear model, the usual way of thinking is that there is a regression line which

is usually of interest to the modeler. In addition, there is a normally distributed error

term, which is added to the regression line to get the realized observations. This way of

137



138 CHAPTER 4. GENERALIZED LINEAR MODELS

thinking is used in development of the least squares estimation methods, thus we call

it the LS-formulation of the linear model. It can be written as

y = Xb + e

where e ∼ Nn(0,V ).

Another way of thinking is the formulation we used in section 2.6 to derive the

ML-estimators for the model parameters. This formulation, called ML-formulation, is

specified as

y ∼ Nn(Xb,V )

Thus, we do not explicitly write the error term, but the assumed linear relationship be-

tween response and the predictors has been written to the mean of the assumed normal

distribution.

These two formulations, LS and ML-formulation, are equivalent, but arise from

two different ways of thinking. The lower alternative represents such a way of thinking

that is used in generalized linear models. The most essential difference is that the gen-
eralized linear model does not have an explicitly written error term. Furthermore,

the LS-way of thinking is not necessarily possible for GLM with other distributions

than the normal. Thus, the GLM’s are based on thinking the model through the the

ML-formulation.

The ML estimation of the linear model, which was presented in section 2.6, is the

generalized linear model formulation for normally distributed response. The general-

ized linear model can be developed also for other types of response in a similar manner.

We just write the parameters (or functions of them) as a linear function of predictors,

and fit the assumed distribution into the data using the method of maximum likelihood.

With distributions belonging to the exponential family, certain good properties hold

for the estimators, and statistical packages generally do not provide tools for estimation

of GLM for other distributions than those belonging the exponential family.

4.2 GLM for exponential family

4.2.1 Model formulation

The generalized linear model for a random variable that follows a distribution of expo-

nential family is (McCulloch and Searle 2001)

yi ∼ indep.fYi|γi
(yi)

fYi|γi
= exp

(
yiγi − b(γi)

τ2
− c(yi, τ)

)
(4.1)
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The first expression states the family of the distribution. It is assumed that the data,

yi, i = 1, . . . , n, constitute an independent, random sample form a distribution with

density fYi . The second expression states a general formulation to that density, i.e.,

the so called canonical formulation of the exponential family, where γi and τ are the

parameters of the distribution. Especially, τ is related to the variance of the distribution

and γi to the mean. Functions b and c are assumed to be known. Parameter γ is called

the canonical parameter and is related to the mean through

µi = E(Yi) = b′(γi)

and the variance is

Var(Yi) = τ2b′′(γi)

= τ2b′′(b′−1(µi))

≡ τ2v(µi)

In addition to the above assumptions, we assume that a function of the mean is

linear in predictors,

g(µi) = x′b

which is equivalent to

g(−b′(γi)) = x′b .

Function g is the applied link function, which is usually selected so that it retains the

estimated parameters within its support.

For example, if the expected value of the random variable, µ = −b′(γi) has to be

between 0 and 1, the link g(µ) should be a monotone function between µ ∈ [0, 1] that

gets all possible values between ]−∞,∞[. Such a function is obtained as the inverse

cdf (i.e., quantile function) of any continuous distribution. Another typical example

restricts the parameter µ = −b′(gammai) to be positive. An appropriate link for this

case is a monotone function that gets values ]−∞,∞[ for µ ∈ [0,∞]. The idea of the

link is, that function x′b may give any values within ]−∞,∞[. Thus, by applying the

inverse link µ = g−1(x′b), the fitted value of µ is always within its allowed range.

In addition, for each density function f , the so called canonical link ensures that

X′y is a sufficient statistic for γi. The canonical links for some distributions are given

in table 4.1.

4.2.2 Estimation

The estimation of GLM is based on the maximum likelihood principle. The log like-

lihood of a random variable that is distributed according to the exponential family is
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Table 4.1: Canonical link functions for the most common distributions of the exponen-
tial family (adopted from Wikipedia 28.4.2008)

Distribution Name Link Function Mean Function
Normal Identity Xβ = µ µ = Xβ
Exponential Inverse Xβ = µ−1 µ = (Xβ)−1

Gamma Inverse Xβ = µ−1 µ = (Xβ)−1

Inverse Gaussian Inverse squared Xβ = µ−2 µ = (Xβ)−1/2

Poisson Log Xβ = ln (µ) µ = exp (Xβ)
Binomial Logit Xβ = ln

(
µ

1−µ

)
µ = exp (Xβ)

1+exp (Xβ)

Multinomial Logit Xβ = ln
(

µ
1−µ

)
µ = exp (Xβ)

1+exp (Xβ)

obtained from (4.1) as

l =
1
τ2

n∑
i=1

[yiγi − b(γi)]−
n∑

1=1

c(yi, τ)

It can be shown (see McCulloch and Searle (2001) for details) that

∂l

∂b
=

1
τ2

∑
(yi − µi)wig(µi)x′i

where wi = [v(µi)g2(µi)]−1, and v is the variance function, which was defined earlier.

By defining W and ∆ as

Wn×n =

 w1 . . . 0

· · ·
. . .

...
0 · · · wn

 ∆n×n =

 g(µ1) . . . 0

· · ·
. . .

...
0 · · · g(µn)


we can write the likelihood equation in the matrix form as

∂l

∂b
=

1
τ2

X′W∆(y − µ).

Equating this to 0 gives the ML equations as

X′W∆y = X′W∆µ.

In the equations, both W , ∆, and µ are functions of the parameter of interest, β. These

functions are usually nonlinear, and cannot be solved analytically. Thus, iterative nu-

merical methods, such as Fisher scoring and iterative weighted least squares methods,

are usually needed for solving these equations and estimating the parameters.

There are also other methods of estimation for the GLM, such as the maximum

quasi-likelihood approach (MQL, suurin näennäis uskottavuus). As the name expresses,

it maximizes something that is similar to the likelihood, but is not the likelihood ex-

actly. This method has been developed for such situations, where no other assumptions

about the distribution of the data are, except how the variance depends on the mean in
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Figure 4.1: Plot of the count data and the fitted regression line.

the data. Thus, this method is somehow looking for a counterpart of the LS approach in

the case of GLMS. For some distributions, such as Poisson the ML leads to equivalent

results to those of MQL with corresponding assumptions on mean-variance relation-

ship. The MQL also has some advantages in the case of overdispersion (McCulloch

and Searle 2001).

Example 4.1 The number of spruce saplings has been recorded from 123 sample plots.

Each of the plots has been taken from different regeneration area. For count data, the

Poisson regression would be appropriate methodology. We want to explain the number

of spruce saplings per plot using mean height of deciduous trees. We first plot the data

to see that the number of spruces decreases as the height of deciduous trees increases

(Figure 4.1).

> plants2<-read.table("c:/laurim/biometria/plants2.txt",header=TRUE)
> plants2<-plants2[!is.na(plants2$hdecid),] # remove observations with unknown hdecid
> # plants2$spruces will include both planted and natural spruces
> plants2$spruces<-plants2$planted+plants2$spruces
> plot(plants2$hdecid,plants2$spruces)

The model is fitted using

> glm1 <- glm(spruces ˜ hdecid, family=poisson(), data=plants2)
> summary(glm1)

> summary(glm1)

> summary(glm1)
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Call:
glm(formula = spruces ˜ hdecid, family = poisson(), data = plants2)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6740 -0.8421 -0.1711 0.5929 4.7531

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.360962 0.135115 10.073 <2e-16 ***
hdecid -0.001739 0.001149 -1.513 0.130
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 189.85 on 113 degrees of freedom
Residual deviance: 187.46 on 112 degrees of freedom
AIC: 503.69

Number of Fisher Scoring iterations: 5

We add the fitted line into the plot of our data

> x<-seq(0,300,1)
> lines(x,exp(cbind(1,x)%*%coef(glm1)))

Example 4.2 To show that GLM is just an application of fitting a distribution function
to data using the method of maximum likelihood, we fit the model of previous example
using mle package. For this purpose, we first define a function that computes the neg-
ative log likelihood as a function of our coefficients. Then we use function mle to find
such values for the coefficients that maximize the log likelihood.

> library(stats4)
> nll<-function(b0,b1) {
+ cat(b0," ",b1," ")
+ value<--sum(log(dpois(plants2$spruces,exp(b0+b1*plants2$hdecid))),na.rm=TRUE)
+ cat(value,"\n")
+ value
+ }
>
> solution<-mle(minuslogl=nll,start=list(b0=0.5,b1=0))
0.5 0 317.5801
0.501 0 317.4012
0.499 0 317.7593
0.5 0.001 300.3687
0.5 -0.001 337.6111
179.5457 18621.23 Inf
...
1.380250 -0.002904336 252.3297
1.381250 -0.001904336 249.8583
1.381250 -0.003904336 259.0869
>
> # Estimates, their standard errors, and AIC
> coef(solution)

b0 b1
1.381249811 -0.001904336
> sqrt(diag(vcov(solution)))

b0 b1
0.134270822 0.001140901
> AIC(solution)
[1] 503.7166
> logLik(solution)
’log Lik.’ -249.8583 (df=2)
>
> # The same figures from glm-fit
> summary(glm1)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.360962060 0.135115156 10.072608 7.301548e-24
hdecid -0.001738545 0.001149177 -1.512861 1.303151e-01
> AIC(glm1)
[1] 503.6938
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> logLik(glm1)
’log Lik.’ -249.8469 (df=2)

Our own code results in slightly different estimates. To check if the differences result
from different likelihoods, we compute the likelihood at the solution of glm using our
own function nll.

> nll(coef(glm1)[1],coef(glm1)[2])
1.360962 -0.001738545 249.8469
[1] 249.8469

The resulting value is exactly same as the negative log-likelihood of the GLM

model. Thus, the differences result from that glm uses a better algorithm for maxi-

mization than our general-purpose function mle, which just calls R function optim.

4.2.3 Inference and tests

We remember from section 1.5.1, that the asymptotic variance-covariance -matrix of a

ML-estimate can be obtained as

var(θ̂) ≈ [I(θ)]−1

where

I(θ) = −E
[
∂2l

∂θ∂θ′

]
In this case, it can be shown that applying the above equations would give the asymp-

totic variance as (McCulloch and Searle 2001)

var(b̂) = τ2(X′WX−1)

Thus, the asymptotic distribution of the ML-estimate of b, b̂ is Normally distributed

with mean b and variance-covariance matrix τ̂2(X′WX−1). However, note that these

results are asymptotic, and are not necessarily valid for small samples. However, exact

results do not exist for generalized linear models.

To test if the predictors of the model significantly explain the variance in the data,

a Likelihood Ratio (LR) test can be formulated. More specifically, assume a null hy-

pothesis

H0 : θ = θ0.

where θ0 is a specified value we assume for θ under the null hypothesis. If the null

hypothesis is true, the likelihood ratio test statistic

−2 ln Λ = −2
[
l(θ0)− l(θ̂)

]
(4.2)

follows the χ2(q) distribution with where q is the number of restrictions.

The parameter vector can also be partitioned by making specified assumptions only

for some of the parameters. This can be formulated as a LR test as follows.
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1. Fit the full model and save the value of the maximum log likelihood.

2. Fit a restricted model, where the parameters of interest are restricted according

to the null hypothesis, and other parameters are estimated using the method of

maximum likelihood.

3. Compute the LRT test statistic (4.2).

4. Compare the test statistic to χ2(q) distribution, where q is the number of restric-

tions in the restricted model.

Another test, called Wald test, can be used for the same purpose. According to

McCulloch and Searle (2001), it is computationally simpler, but may lead to worse

approximations of the p-value with moderate or small sample sizes and extreme devia-

tions. To test two models against each other, a Likelihood Ratio test can be formulated.

Example 4.3 We want to test if dropping the only predictor from our model would
cause no remarkable reduction of fit. The restricted model is fitted using

> glm2 <- glm(spruces ˜ 1, family=poisson(), data=plants2)
> summary(glm2)

> summary(glm2)

Call:
glm(formula = spruces ˜ 1, family = poisson(), data = plants2)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.5374 -0.7311 -0.1237 0.4191 4.7545

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1692 0.0522 22.4 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 189.85 on 113 degrees of freedom
Residual deviance: 189.85 on 113 degrees of freedom
AIC: 504.09

Number of Fisher Scoring iterations: 5

The test statistic is computed as

> chiobs<--2*(logLik(glm2)-logLik(glm1))
> chiobs
[1] 2.392032

The same statistics is obtained also using anova

> anova(glm2,glm1)
Analysis of Deviance Table

Model 1: spruces ˜ 1
Model 2: spruces ˜ hdecid

Resid. Df Resid. Dev Df Deviance
1 113 189.853
2 112 187.461 1 2.392
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Figure 4.2: An illustration of the logit- (left) and inverse logit (right) transformations.

However, anova does not perform the test for glm, so we need to do it by ourselves.
Comparison of the test statistic to χ2 distribution with one degree of freedom gives

> 1-pchisq(chiobs,1)
[1] 0.121955

The p-value of 0.12 indicates that the trend seen in the number of spruce saplings

could be a result of chance, as obtaining such a trend or stronger would have a prob-

ability of 0.12 if null hypothesis is true. The p-value of the coefficient of glm1 would

have led to the same inference, even though the p-values differ slightly.

4.3 Logistic regression

In addition to the Linear model under normality, one common application of the gen-

eralized linear model is the logistic regression. It is the best-justified method for data

of binary observations, such as success or failure, or presence or absence of a certain

feature. Let us define the logit-transformation as

g(µ) = logit(µ) =
µ

1− µ

Where µ is the expected value of the binomial variable, and is always between 0 and 1.

The inverse logit is obtained by solving the above equation for µ. We get

µ = g−1(y) =
1

1 + e−y
.

These functions are illustrated in figure 4.2

In the Logistic regression model, we assume

yi ∼ indep.Bernoulli(µ(xi))

g(µi) = logit(µi)

= x′ib
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The estimation and inference follows the procedure outlined for the general model.

4.4 Poisson regression

The Poisson regression is an appropriate model for count data. In the Poisson regres-

sion model, we assume

yi ∼ indep.Poisson(µ(xi))

g(µi) = ln(µi)

= x′ib

The log link is used to ensure that the expected density, µi, is greater than zero.

The estimation and inference follows the procedure outlined for the general model,

and details are omitted.

As we remember from Chapter 1, the mean and variance of Poisson distribution are

the same. However, a very common situation is that this relationship does not hold. In

this case, an additional parameter is introduced that specifies the relation of the variance

and expectation. It should be noted that this means that the Poisson distribution is not

any more assumed. However, this model is commonly referred as extra-poisson model.

In reality, no specific distribution is assumed, but the distribution is approximated by a

discrete distribution that allows different mean and variance. Such distribution is, for

example, the negative binomial distribution.

Example 4.4 In the previous examples, we fitted Poisson GLM to the count data of

spruce saplings. The assumption on the distribution was not evaluated, even though

we carried out tests etc for the data. In Poisson situation, a crude test on the as-

sumption can be carried out by comparing variances to the mean in discrete classes of

the predictor. Thus, we classified the data from 123 plots to 5 classes of hdecid, with

each class having equal number of observations. The class means and variances were

computed, and are added to the previously shown plot of data in Figure 4.3.

We see that the variances are higher than mean for all classes except for the last

one, for which mean is slightly higher than the variance. However, the differences are

fairly small for three classes. For the rest two classes, variances are about two times

as high as the means. This implies that the assumption on Poisson distribution did not

hold very well, but the number of seedlings varies more than one could expect. This is

related to the spatial pattern of tree locations. We remember that the number of trees

within a plot is Poisson distributed if tree locations are independent. Thus, this results

shows that this independence is not met. The higher variance than the mean indicates

clustering of spruce saplings. The lower-than-the-mean variance would mean regular
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Figure 4.3: Means (diamonds) and variances (filled circles) in five classes of hdecid.

spatial pattern. Thus, we conclude that our data indicates clustering, and some other

assumption than Poisson could be better. This is a very common situation with real-life

datasets.

A better assumption would be an ”overdispersed Poisson distribution. It is im-

portant to recognize that this is a misleading term, as we are actually not any more

assuming a Poisson distributon. Instead, we assume an unspecified distribution having

two parameters: one for mean, and another for the ratio of variance and mean. As no

specific assumption on distribution is not made, the likelihood cannot be written, and

MLE:s cannot be computed. However, we can write a quasi-likelihood that is some-

thing similar to the likelihood, but uses only information on mean and variance, not on

the distribution itself. This would lead to Quasi-likelihood estimation. More informa-

tion on these approaches can can be found e.g., in McCulloch and Searle (2001).

limits<-quantile(plants2$hdecid,na.rm=TRUE,probs=seq(0,1,0.2))-c(1,0,0,0,0,0)
means<-sapply(1:5,function(x) mean(plants2$spruce[plants2$hdecid>=limits[x]&plants2$hdecid<limits[x+1]],na.rm=TRUE))
vars<-sapply(1:5,function(x) var(plants2$spruce[plants2$hdecid>=limits[x]&plants2$hdecid<limits[x+1]],na.rm=TRUE))
points((limits[-1]+limits[-6])/2,means,pch=18,cex=3)
points((limits[-1]+limits[-6])/2,vars,pch=19,cex=3)

4.5 Weibull regression

The Weibull distribution is not a member of the exponential family. However, as an

approach that is very similar to the GLM was presented for modeling diameter distri-
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butions with Weibull distribution by Cao (2004), I will present such GLM-type model

here.

Assume we have observed tree diameters from several stands, and we want to

model the stand-specific diameter distribution using the Weibull distribution. Further-

more, we want to to relate the Weibull parameters to some stand-specific variables,

such as stand age, or mean diameter. The ultimate aim is to fit a model that could be

used for predicting the diameter distribution for a stand where only the utilized stand-

specific predictors are known. This approach is commonly referred as the parameter

prediction method (PPM) in the forestry literature.

A commonly used approach for such a modeling task is to first fit a Weibull distri-

bution to the measured diameters of each stand using the method of maximum likeli-

hood. After this first step, a dataset is obtained where each stand is one observation,

and Weibull parameters and values of the potential stand-specific predictors are known

for each stand. In the second step, the ML-estimates are modeled using the stand-

specific predictors for each stand to estimate general relationships between the Weibull

parameters and stand characteristics.

The GLM-type approach of Cao (2004) does these two steps at once, which is

theoretically better justified and may also result to better fit. The assumed model for

the diameter of tree i, i = 1, . . . , n is stated as follows

yi ∼ indep.Weibull(αi, βi)

gα(αi) = ln(αi)

= x′αibα

gβ(βi) = ln(βi)

= x′βibβ

Thus, we assume that tree diameter follows the Weibull(α, β) distribution. Fur-

thermore, we use the log link for both parameters, as they are restricted to be greater

than zero. The logarithmic parameters are assumed to be linear functions of the pre-

dictors, as specified in the last two equations. The predictors and coefficients may be

different for the shape (α) and scale (β) parameters, that is why indices α and β are in

vectors x and b.

This specification is based on a similar way of thinking as is the GLM. However,

there are some differences. First, Weibull distribution is not a member of the expo-

nential family, so the results based on this assumption do not hold. Second, we are

not modeling the mean of the distribution, but the parameters directly. Third, two pa-

rameters are written as a function of predictors, instead of having only the mean to



4.5. WEIBULL REGRESSION 149

be modeled. However, if one manages to fit the model, the asymptotic properties of

ML-estimates (consistency, unbiasedness, efficiency and normality) hold. These prop-

erties are, however, only large sample properties, and may be badly violated for small

samples.

Example 4.5 Dataset spati includes 10255 measured tree diameters from 66 plots in

North Carelia. To relate the diameter distribution parameters on stand characteristics,

we first use the well-known PPM approach (Parameter Prediction Method). In that

method, the two-parameter Weibull function is first fitted int the data of each plot. Then

the obtained estimates are saved into a plot-specific data, and the estimates are related

to stand characteristics using a linear model. We omit all details on model diagnostics

and assumptions made, as the aim is just to demonstrate the glm approach.

The following code was used to fit Weibull for each plot using ML, and to save the

estimated into data frame plots, which has 66 rows, one for each plot. Then we plot the

selected stand variables and parameter estimates to study the relationships between

stand variables and distribution parameters (Figure 4.4).

> library(stats4)
>
> # 2 parameter Weibull -logL
> nLLweibull<-function(x, shape=5,scale=20) {
+ -sum(dweibull(x,shape=shape,scale=scale,log=TRUE))
+ }
>
> # Fits two-parameter weibull distribution to tree diameter data using MLE starting from values 5 and 20
> # for shape and scale, respectively
> fitw2<-function(d) {
+ est<-mle(function(shape=5,scale=20) nLLweibull(d,shape,scale))
+ if (class(est)=="try-error") list(par=rep(NA,2),neg2LL=NA,conv=NA)
+ else list(par=coef(est),neg2LL=2*attributes(est)$min,conv=attributes(est)$details$convergence)
+ }
> # Fit weibull for each plot
> for (i in 1:dim(plots)[1]) {
+ d<-spati$d[spati$plot==plots$plot[i]]
+ weibullfit<-fitw2(d)
+ plots[i,c("shape","scale")]<-weibullfit$par
+ }
There were 50 or more warnings (use warnings() to see the first 50)
>
> plot(plots[,-1]) # do not include the first column

The plot shows no correlation between shape and stand variables. The scale pa-

rameter is quite highly correlated with mean diameter and mean height. Based on

these observations, we use a constant value for shape, and relate logarithmic scale on

Dg and Hg. The logarithmic scale is used for compatibility with the used Weibull re-

gression with log link. The relationships are clearly not linear, but we assume linearity

for simplicity. The parameter estimates for the PPM models are shown below.

> lmsc<-lm(log(scale)˜Dg+Hg,data=plots)
> lmsh<-lm(log(shape)˜1,data=plots)
> coef(summary(lmsh))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.067284 0.04159837 25.65688 1.013757e-35
> coef(summary(lmsc))
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Figure 4.4: Plot of stand-specific Weibull-parameters on stand characteristics.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.64465659 0.055449860 29.660248 1.002560e-38
Dg 0.02537290 0.008300818 3.056674 3.281326e-03
Hg 0.03956507 0.010854219 3.645133 5.428510e-04

Next, we formulate the Weibull GLM, where the ML fit and model fitting are carried
out in one and the same stage. The coefficients from the PPM model are used as initial
estimates of the parameters.

> coef(lmsh)->csh
> coef(lmsc)->csc
> names(csc)<-names(csh)<-c() # Having names in the vector, mle tries to use them as parameter names and gets lost.
>
> # Refit using glm-type approach
>
> nLL<-function(b0sh=csh,b0sc=csc[1],b1sc=csc[2],b2sc=csc[3]) {
+ shape<-exp(b0sh)
+ scale<-exp(b0sc+b1sc*spati$Dg+b2sc*spati$Hg)
+ -sum(dweibull(spati$d,shape=shape,scale=scale,log=TRUE))
+ }
>
> weibull.glm<-mle(minuslogl=nLL)
Warning messages:
1: In dweibull(x, shape, scale, log) : NaNs produced
2: In dweibull(x, shape, scale, log) : NaNs produced
3: In dweibull(x, shape, scale, log) : NaNs produced
4: In dweibull(x, shape, scale, log) : NaNs produced
5: In dweibull(x, shape, scale, log) : NaNs produced
6: In dweibull(x, shape, scale, log) : NaNs produced
7: In dweibull(x, shape, scale, log) : NaNs produced
8: In dweibull(x, shape, scale, log) : NaNs produced
9: In dweibull(x, shape, scale, log) : NaNs produced
> summary(weibull.glm)
Maximum likelihood estimation

Call:
mle(minuslogl = nLL)

Coefficients:
Estimate Std. Error

b0sh 0.94660490 0.007817644
b0sc 1.60010673 0.011130143
b1sc 0.04103064 0.001823252
b2sc 0.02342298 0.002213285

-2 log L: 60985.8

The estimates from GLM approach are quite different from those of PPM, but are

of the same order of magnitude. Cao (2004) reported that the estimates from GLM

approach lead to highly more accurate prediction of diameter distribution than the

traditional PPM estimates. The improvement is due to that the GLM does the whole

procedure in a single stage, whereas in PPM is carried in two stages, and parameter

estimates from the first stage include estimation errors.

4.6 Generalized linear mixed models

As one might guess, the generalized linear mixed model is a generalized linear model

with random effects. Such a model is appropriate for modeling hierarchical datasets, as

was the linear mixed-effects model, too. The random effects are incorporated into the

linear part of the model. Let c include the random effects of the model. The generalized
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linear mixed model is specified as,

yi|c ∼ indep.fYi|u(yi|c)

fYi|c = exp
(
yiγi − b(γi)

τ2
− c(yi, τ)

)
g(µi) = x′

ib + z′c

The model specification is very similar to the GLM, but now we have random effects

c added to the linear predictor. The random effects are assumed to have a multinormal

distribution, and effects of different groups in the data.

It is important to note that the generalized linear model assumes distribution of the

exponential family for the conditional observations. Thus, for example, we might

assume that tree species within a given stand is bernoulli distributed, or the number of

trees of a given species from plots of one stand follows a Poisson distribution. However,

the marginal distribution of the data may not be of that family. In linear mixed-effects

model, where normality was assumed for the response, the general results on the nor-

mal distribution state that all conditional and marginal distributions of a multinormal

distribution is normal. Thus, for LMM, marginal distributions are also normal. How-

ever, these result do not hold generally, and marginal distribution usually cannot be

specified. However, the marginal expectation, variance, and covariance can be com-

puted. The general formulas for marginal expectation, variance, and covariance are as

follows.

E(yi) = E
[
g−1(x′

ib + z′
ic)
]

var(yi) = var
[
g−1 (x′

ib + z′
ic)
]
+ E(τ2v

(
g−1[x′

ib + z′
ic]
)
)

cov(yi, yj) = cov
[
g−1(x′

ib + z′
ic), g−1(x′

jb + z′
jc)
]

As one can see, the values of these depend on the utilized link function, and on the

assumed distribution of the data. Thus, no easily applicable formulas can be presented

for these moments of the marginal distribution. In general, random effects cause de-

pendence among the observations so, that observations that share a random effect are

correlated. However, computing the correlation is not that simple as it was with LMM.

The estimation of the parameters of a GLMM is based on the principle of maximum

likelihood. Each possible value of the random effect vector cwould give different value

for the likelihood. Thus, we can think the value of the likelihood as a transformation

of the random variable, c. The expected value of the likelihood is then the likelihood

of the data. The likelihood becomes

L =
∫

c

∏
i

fYi|c(yi|c)fC(c)dc
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where fYi|c(yi|c) is the conditional density of the data (e.g., Poisson density), and

fC(c) is the q-dimensional joint distribution of random effects cq×1.

Example 4.6 Assume that ni sample plots of equal area have been measured from

stand i, i = 1, . . . ,m. Let yij denote the number of Scots pines observed on the j th

plot of stand i. A model for the number of Scots pines within a plot is specifies as

yij |c ∼ indep.Poisson(µij)

lnµij = x′
ijb + ci

ci = i.i.d.N(0, σ2
c )

This model assumes only a random constant for each stand, so that the logarithmic

density (and variance, as they are equal with Poisson distribution), behaves in a similar

way with respect to the predictors, but the level may change.

The likelihood can be written as

l = ln

 m∏
i=1

∫ ∞

−∞

ni∏
j=1

µyij
ij e

−µij

yij !
1

√
2πσ2e

− 1
2σ2

c
c2i
dci


= y′Xb−

∑
i,j

ln yij ! +

∑
i

ln
∫ ∞

−∞
exp

yi·ui −∑
j

ex′
ijb+ui

 1√
2πσ2

c

e
− 1

2σ2
c
c2i dci

This integral cannot be expressed in closed form. Thus, we cannot express the like-

lihood equations in closed form, and all the computations need to be carried out nu-

merically. However, numerical methods are so well developed nowadays that modern

computers are able to find estimators for GLMMs.

The inference and tests on GLMMs are all based on the asymptotic properties of

the ML-estimator. Thus, the inference and diagnostics on GLM:s applies also for

GLMM:s.

The prediction of random effects with GLMMs is not as simple as for linear models.

Example 4.7 A more extensive data of spruce saplings can be found in file plants.txt.
The data includes measurements from 1926 plots from 123 regeneration areas within
one county. The data is read using the following code.

> plants<-read.table("c:/laurim/biometria/plants.txt",header=TRUE)
> plants<-plants[!is.na(plants$hdecid),]
> plants$spruces<-plants$planted+plants$spruces
> hist(plants$spruces)

A good starting point for a model for spruce sapling counts is a Poisson mixed
model with log link and random constant. We fit the model using the default PQL
method for approximating the likelihood.
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Figure 4.5: Histogram of the number of spruce saplings in dataset plants.

> glmm1.PQL<-lmer(spruces ˜ (1|stand)+hdecid, family=poisson(), data=plants)
Generalized linear mixed model fit using PQL
Formula: spruces ˜ (1 | stand) + hdecid

Data: plants
Family: poisson(log link)
AIC BIC logLik deviance
2373 2390 -1184 2367
Random effects:
Groups Name Variance Std.Dev.
stand (Intercept) 0.065014 0.25498
number of obs: 1926, groups: stand, 123

Estimated scale (compare to 1 ) 1.058734

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1713541 0.0462620 25.320 <2e-16 ***
hdecid -0.0001229 0.0003464 -0.355 0.723
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:
(Intr)

hdecid -0.820

Hdecid seems to be insignificant predictor, and could probably be dropped. Thus,
we fit a restricted model and make a likelihood ratio test.

> glmm2.PQL<-lmer(spruces ˜ (1|stand), family=poisson(), data=plants, method="PQL")
> anova(glmm2.PQL,glmm1.PQL)
Data: plants
Models:
glmm2.PQL: spruces ˜ (1 | stand)
glmm1.PQL: spruces ˜ (1 | stand) + hdecid

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
glmm2.PQL 2 2371.5 2382.7 -1183.8
glmm1.PQL 3 2373.4 2390.1 -1183.7 0.1622 1 0.6871
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> summary(glmm2.PQL)
Generalized linear mixed model fit using PQL
Formula: spruces ˜ (1 | stand)

Data: plants
Family: poisson(log link)
AIC BIC logLik deviance
2372 2383 -1184 2368

Random effects:
Groups Name Variance Std.Dev.
stand (Intercept) 0.064826 0.25461

number of obs: 1926, groups: stand, 123

Estimated scale (compare to 1 ) 1.058644

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.15792 0.02644 43.8 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The p-value from anova (0.6871) leads to rejection of glmm1, and we conclude

that there is no evidence on that the number of spruce samplings would depend on the

height of deciduous trees in this data. The next question could be whether the random

effects are significant. The summary above showed, that the estimated between-stand

variation in the logarithmic number of saplings is 0.25, which shows to be quite high.

A test on this needs a restricted model, i.e., a model without random effects. Such a

model is fitted using glm, and the likelihood ratio test is then carried out.
> glm1<-glm(spruces ˜ 1, family=poisson(), data=plants)
> chiobs<--2*(logLik(glm1)-logLik(glmm2.PQL))
> chiobs
[1] 5738.658
> 1-pchisq(chiobs,1)
[1] 0

The value of test statistic is extremely high, indicating significant variation in stand

density among stands. Thus, we accept the model with random effect for stand and no

fixed effects as the final model.

The estimation methods for GLMM:s have not yet been found, and this area is un-

der development. In GLMM:s, the problem is that the likelihood needs to be approxi-

mated numerically. Different approximation methods work in different situations, and

that is why it is important to test different methods and even different implementations

of them to see whether the estimates are the true maximums the likelihood. In R, there

are three alternatives for GLMM:s: PQL, Laplace, and AGQ. However, AGQ is avail-

able only in lmer2, which is a development version of lmer. The authors of lmer write

of the estimation methods as follows. ”The PQL method is fastest but least accurate.

The Laplace method is intermediate in speed and accuracy. The AGQ method is the

most accurate but can be considerably slower than the others. However, it appears that

AGQ does not work for all situations.

Example 4.8 The following code fits the model of previous example using Laplace

method.
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> glmm2.Laplace<-lmer(spruces ˜ (1|stand), family=poisson(), data=plants, method="Laplace")
> glmm2.Laplace
Generalized linear mixed model fit using Laplace
Formula: spruces ˜ (1 | stand)

Data: plants
Family: poisson(log link)
AIC BIC logLik deviance
2371 2382 -1183 2367
Random effects:
Groups Name Variance Std.Dev.
stand (Intercept) 0.0758 0.27532
number of obs: 1926, groups: stand, 123

Estimated scale (compare to 1 ) 1.055265

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1482 0.0281 40.86 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

There are slight differences in the estimates of coefficients. According to the sugges-

tion of the authors of lmer package, I would select the model estimated using Laplace

instead of the one estimated using PQL.
The AQL method does not work for this data.

> glmm2.AGQ<-lmer(spruces ˜ (1|stand), family=poisson(), data=plants, method="AGQ")
Error in lmer(spruces ˜ (1 | stand), family = poisson(), data = plants, :
method = "AGQ" not yet implemented for supernodal representation

4.7 exercises

• Model the dependence of the number of planted spruces on the covariates of

dataset plants2 using a GLM.

• Model the dependence of the number of planted spruces on the covariates of

dataset plants using a GLMM.
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Model systems

5.1 Types of model systems

Models systems arise from a need to simultaneously model several responses. Typi-

cally, methods developed for simultaneous model estimation are needed when a model

system, comprised of several individual models, is estimated. In fitting the model sys-

tem, it may not be enough to model the behavior of individual models of the system.

Instead, a model system may bee needed that realistically describes the system as a

whole. For this reason, the interrelationships between models need to be taken into

account.

Model systems have been used a lot of in econometrics for modeling the markets.

For example, the so called Kleins small macroeconomic model includes equations for

consumption, demand and investment (Greene 1997). The individual equations of this

system are directly related, for example the demand is a function of consumption and

investment. In forestry, model systems are needed, for example, in developing a forest

simulator. Such a simulator may include models for stand structure, tree growth, mor-

tality, and silvicultural operations. The stand structure has affects stand growth, which

in turn determines the timing of the silvicultural practice, e.g., thinning. Furthermore,

the thinning has an effect on the stand structure etc. Thus, different model components

should formulate a model system that describes the development of a forest stands in a

realistic way.

The model systems may be directly related, seemingly unrelated, or unrelated. In

directly related models, response of one model may be the predictor in another model.

In seemingly unrelated model, direct relationships do not exist between the individual

models. However, the models may be related in that the residuals are correlated. In

unrelated models, no direct relationship exists between the models, and the residuals

are uncorrelated.

157
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5.2 Estimation of directly related models: 2SLS

5.2.1 Illustration through height and volume models

In directly related models, a predictor of one component model is the response of an-

other component. For example, we may have a model system for height hi and volume

vi for tree i:

lnhi = ah + bh ln di + ehi (5.1)

ln vi = av + bv ln d+ cv lnh +ev (5.2)

where d is tree diameter, ah, bh, av , bv , and cv are parameters to be estimated, and eh
and ev are the residuals of the models, which are assumed to be uncorrelated and have

expectation 0.

The two models of the above system are directly related, because one of the predic-

tors of the volume model, the tree height, is the response of the height model. Assume

that we have a model fitting data including observed diameters, heights, and volumes

for trees from one stand. We could fit the models separately, i.e, first fit the model for

tree height and then for tree volume. This would be a rather good approach in many

situations.

Problems arise if we use the model for prediction for trees with unknown height.

In such case we would first predict tree height using model (5.1), and further write the

predicted height into the lower model to predict tree volume. However the predicted

height is a different random variable then the true tree height. Thus, we are replacing a

required predictor with something else, which is an unbiased estimator of the random

variable we would need.

An estimation method that accounts for this problem is obtained by replacing the

true height in the volume model with the predicted height also in the estimation stage.

Then using the predicted height utilized in the application stage would be exactly the

same random variable which was used in the model fitting stage. Thus, the estimation

would be carried out in two stages:

1. Fit the height model (5.1) to the data, and save the fitted values of the model

2. Fit the volume model (5.2) to the data, but replace the height in the RHS by the

predicted height from step 1.

This two-stage approach yields a model system that could be used in the application

described below. Note that the volume model fitted in the second stage usually fits

much worse to the data than a model with the true height as a predictor would fit. This

is just a result of the fact that we are able to utilize only that part of the variation in
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tree height that could be explained with variation in tree diameter. Thus, the fitted

volume model is actually based on tree diameter only, and it does not account for the

variation in tree height. However, this is what we actually need, as we do not have that

information on tree height available in applications.

5.2.2 General formulation

In general case, the variables appearing in a model system can be classified into two

classes: endogenous and exogenous. The exogenous variables are called instrumental

variables, and they are the variables that bring the information into the system. In the

previous example, the only instrumental variable was the tree diameter. The instrumen-

tal variables are those variables we will actually have known when the model system is

applied in practice.

The direct relationships among the components of a model system can be taken

into account through a two-stage least squares approach. In that approach, models for

all the predictors are first fitted using the instruments as predictors, and the fitted values

of these models are saved. In the second stage, the actual values of the predictors are

replaced with the predictions from the first stage, to estimate the coefficients of the

model system.

Let X be the model matrix of the model component to be estimated, and let Z be

the matrix of instruments. The two-stage least squares approach can be written as:

1. X̂ = Z(Z′Z)−1Z′X

2. B̂IV = (X̂′X̂)−1X̂′Y

Note that in the case of unrelated models, this approach would lead to OLS as a special

case. This is because Z and X would be identical, giving X̂ = X .

5.3 Estimation of unrelated models with correlated resid-
uals: SUR

5.3.1 Model formulation

The seemingly unrelated models do not have such a direct relationship as the directly

related models do. However, they are related to each other because the residuals are

correlated. Let us consider an example where tree height and volume are both modeled

on tree diameter only

lnhi = ah + bh ln di + ehi (5.3)

ln vi = av + bv ln d+ evi (5.4)
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where the notations are the same as we used in models (5.1) and (5.2).

If the models are estimated separately, we would assume ehi are independent, iden-

tically distributed random variables with constant variance, and the same assumptions

would also be done for evi. However, the residuals for different models may be corre-

lated for same individuals. For example, it might be realistic to assume that if height

is overestimated for a given tree i, then also the volume might be overestimated. The

separate estimation does not provide information on this kind of correlation. In a SUR

model, we allow correlation among responses by specifying cov(ehi, evi).

The SUR model can also be expressed in a matrix form. Assume that we have m

individual models,

y1 = X1b1 + e1

y2 = X2b1 + e2

...

ym = Xmb1 + em

By defining

y =


y1

y2

...
ym

 X =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xm



e =


e1

e2

...
em

 b =


e1

e2

...
em


we can write the model system in the form of linear model (2.4) as

y = Xb + e

Thus, this model is just a special case of the (very!) general matrix formulation of

the linear model. In the above formulation, X is a block-diagonal matrix. Matrix

D = var(e) has quite a peculiar structure

D =


σ2

1I ϕ12I · · · ϕ1mI
ϕ12I σ2

2I · · · ϕ2mI
...

...
. . .

...
ϕ1mI ϕ2mI · · · σ2

mI

 .
If the observations are ordered so that observations of different response of one ob-

servation are one after another, then the structure of X would change to something

peculiar, but matrix D would then be block-diagonal.
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5.3.2 Estimation

As the above specification showed that the SUR model is just a special case of the

LM, the estimation methods do not change from those of the Linear model. Thus,

the estimation involves first estimating the parameters specifying matrix D, and then

estimating the model coefficients using GLS.

Matrix D is specified with response-specific variances of residual error, and the

between-response covariances. For estimating these parameters, two alternative meth-

ods are available. The first one, which we call Zellnerrs method, is very easy to imple-

ment even manually. In that method, the individual models are first fitted to the data

separately using OLS. The variance-covariance matrix of residuals is then estimated

using the residuals from these fits. Another approach is to assume multinormality of

residuals and estimate the parameters of matrix D by using the method of maximum

likelihood. In both methods, the estimated variances and covariances are written to

matrix D, and the parameter vector b is fitted using GLS.

5.3.3 Prediction

Prediction from a SUR model is very similar to prediction from any other linear model.

We just write the values of the predictors to the model and make prediction. The

prediction intervals are calculated in very similar manner than with Linear models.

However, an interesting application arises if the value of one or more responses of

the simultaneous model system has been observed, and other responses are being pre-

dicted for that individual. In that case, the estimated between-model correlation can be

used to carry information from one model to another. The prediction is a straightfor-

ward application of The linear predictor of section 1.6. For example, assume that the

response of model 1 has been observed, and others are to be predicted. We just write

the observed value of y1 into vector h2, and the other variables for the same sampling

unit into vector h1. The predictions is then direct application of the ideas presented in

Section 1.6

5.3.4 Why simultaneous estimation

The across-model correlation may improve the analysis because

1. The fixed parameters of the model may be better estimated.

2. Prediction of the models will be more efficient, if the response of one of the

component models have been observed.

3. A more realistic simulations could be obtained from the models system.
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The first item of the list is maybe the most well-known result of simultaneous estima-

tion. However, it seldom causes any big improvement to the efficiency. SUR leads to

more efficient estimation, if correlations among the residuals exist, and if the predictors

of the component models are not the same. However, if a predictor is dropped from one

component model because of its statistical insignificance, and the predictors are oth-

erwise the same, the gain of SUR is negligible. I would see simultaneous estimation

as an alternative to using all the predictors in all the component models. This being

the case, it seldom causes any remarkable gain in the efficiency of predictors. Thus, I

would regard the two later points as more important from a practical point of view.

However, even though the information on between-model correlation would not

improve the model at all, utilizing a known correlation would lead to much better and

more realistic results in prediction or simulation. However, in these cases it is not

necessary to fit the model simultaneously, but it may be enough just to estimate the

between model covariances using the residuals of individual models. Furthermore,

such an approach could lead to easy implementation of more sophisticated models for

the interdependencies than just a constant covariance (Lappi 2006b).

The prediction from SUR model may be highly more efficient than from separately

estimated models if the residuals of the models are correlated, and if observed response

of one component model can be used in prediction. For example, assume that simul-

taneously fitted models (5.3) and (5.4) are available, and they are used for prediction

for a tree with known height and diameter. In this case, we can compute the realized

residual of the height model for that tree. Furthermore, the between-model correlation

among residuals can be utilized to predict the residual of the volume model for that

tree, which would lead to significantly better prediction of total volume than using tree

diameter alone.

Simulation from a model system is a demanding task, where omitting important

interrelationships between models can lead to drastic results. Thus, knowledge of the

interrelationships between-models is extremely important in simulation. The simula-

tion very often faces to a situation where an assumed linear, constant correlation is not

sufficiently realistic and detailed assumption, and more is needed.

5.4 Estimation of directly related models with corre-
lated residuals: 3SLS

The three-stage least squares is an approach combining 2SLS and SUR approaches. In

3SLS approach, The initial models are first estimated using the instrumental variable

method, i.e., using 2SLS. Residuals of the estimated 2SLS models are used to estimate
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matrix D for the whole models system. This matrix includes also non-zero cross-

model covariances. Finally, the final model is estimated by GLS, using matrix D̂ in

the estimation.

5.5 Simultaneous mixed models

Simultaneous mixed models are obtained, if linear mixed models are fitted for several

responses at the same time. Assume that we have m individual mixed models,

y1 = X1b1 + Z1c1 + e1

y2 = X2b1 + Z2c2 + e2

...

ym = Xmb1 + Zmcm + em

where cov(ei, ej) are nonzero. This means that the residuals of the individual obser-

vations are correlated. If only this kind of correlation is assumed, then an easy way

to implement the model is to write all the responses in the same column of the data,

and add an additional categorical variable that specifies which response is used at that

row. In model fitting, the categorical variable indicating the response would be used to

specify the innermost level of grouping for the data.

In addition, we may assume also the random effects to be correlated, i.e., we would

allow cov(ci, cj) be nonzero. Unfortunately, such models are not that easy to estimate

with R. One could surely rely on estimating the models separately, and then computing

the cross-model covariances using the residuals and predicted random effects. How-

ever, SAS has quite good capabilities for fitting such models.

An application of a simultaneous mixed model was presented by Lappi (1991),

and this model was further demonstrated in Lappi et al. (2006). The following pages

present an example from Lappi et al. (2006).
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Figure 6.3. The dataset and fitted curves of Examples 6.1 and 6.3. The black 
circles show the true volumes of the two sample trees and the open circles those of 
the tally trees. The dotted line shows the expected curve of Example 6.1, the 
dashed line the curve obtained with mixed estimation and the solid line that 
obtained with mixed model prediction.  

 
Example 6.4. The multivariate case 
 
Lappi (1991) constructed the following multivariate model for the logarithmic 
height and logarithmic volume of tree i in stand k from stem analysis data 
(Laasasenaho 1982): 
 

0 1
1 1ln 3.410 18.58ki k k ki

ki ki

H a a e
D D

= − + − +  and 

0 1
1 1ln 2.704 48.93 1.387lnki ki k k ki

ki ki

V D c
D D

= − + + − +c u ,  

 
where Dki is DBH+7 cm, parameters a0k, a1k, c0k and c1k are stand-specific random 
parameters and eki and uki are residuals with estimated variances of 
var(eki)=0.01113, var(uki)=0.01540 and covariance cov(eki,uki)=0.01040. Let us 
write the random parameters as vectors ( )0 1 'k k ka a=a  ( )0 1 'k k kc c=c and 
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96 GENERALIZING SAMPLE TREE INFORMATION  

define ( )' 'k k k=b a c ' . The estimated dispersion matrix of bk is (Lappi 1991) 
 

( ) [ ]1 12

12 2

0.04739 0.3887 0.05082 0.4772
'0.3887 20.64 0.6036 24.88

var
0.05082 0.6036 0.05988 0.7876

0.4772 24.88 0.7876 31.11

k

− −⎡ ⎤
⎢ ⎥− − ⎡ ⎤⎢ ⎥= = = =⎢ ⎥⎢ ⎥− − ⎣ ⎦
⎢ ⎥− −⎣ ⎦

D D
b D C H

D D

. 
The last two parts define a partition of matrix D that is needed in the following 
calculations. The measured height of a sample tree will be used below to predict 
the random parameters of the volume function. Assume that two sample trees of 
diameters 20 and 30 cm and heights 20 and 26 m have been measured. The 
measured heights follow the model  
 

k k= + +y μ Za ek , 
 

where vector yk includes the measured logarithmic heights, 
ln 20 3.00
ln 26 3.26k
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

y , 

and μ their expectations, which are obtained using the first two terms of the height 

model as . Matrix Z is the design matrix of the random part, i.e., 
2.72
2.91
⎡

= ⎢
⎣ ⎦

μ ⎤
⎥

( )
( )

1 1 20 7
1 1 30 7

+⎡ ⎤
= ⎢ +⎣ ⎦

Z ⎥  , and ak and ek are unknown vectors of random parameters and 

random residuals with variances ( ) 1var k =a D  and ( )var 0.01113k = = ⋅e R I

R

. 
Using the height and volume models, equation (6.1) can be written as 
 

1

'
~ ,

' '
k

k

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠

b D CZ0
y ZC ZD Zμ

 

 
and the BLUP of bk is (Equation 6.2)  
 

( ) ( )1
1

0.244
0.985ˆ ' '
0.230
1.131

k k
−

⎛ ⎞
⎜ ⎟
⎜ ⎟= + − =
⎜ ⎟
⎜ ⎟
⎝ ⎠

b CZ ZD Z R y μ  , 

 
i.e. the predicted random parameters are a0k=0.244, a1k=0.985, c0k=0.230 and 
c1k=1.131. The predicted logarithmic heights and volumes are obtained by writing 
these estimates into the height and volume models.  
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 In order to arrive at unbiased predictions of volumes and heights, half of 
the prediction variance was added to the predicted logarithmic heights and volumes 
before applying the exponential transformation. The prediction variance of random 
parameters was first calculated to be  
 

( ) ( ) 1
1

0.0212 -0.536  0.0266 -0.648
-0.536 17.6 -0.716 21.3ˆvar ' ' '
0.0266 -0.716  0.0372 -0.918

-0.648 21.3 -0.918 26.8

k k
−

⎛ ⎞
⎜ ⎟
⎜ ⎟− = − + =
⎜ ⎟
⎜ ⎟
⎝ ⎠

b b D ZC ZD Z R CZ

. 
 
Ignoring the estimation errors in the fixed parameters, the prediction variances of 
the predicted logarithmic heights were then obtained from the diagonal of  
 

( ) ( ) IZaaZyy 01113.0*'ˆvar***ˆvar +−=− kkkk , 
 
where yk* denotes the heights of the tally trees, Z* the design matrix of tally trees 
and ( )ˆvar k k−a a  includes the first two rows and columns of ( )ˆvar k k−b b  (see the 

definition of bk). The height and volume models corrected for population level and 
local bias are shown in Figure 6.4. 
 

0 10 20 30 40 50

0

10

20

Diameter, cm

H
ei

gh
t, 

m

0 10 20 30 40 50

0

1

2

Diameter, cm

Vo
lu

m
e,

m
3

 
Figure 6.4. Predicted height and volume models when random parameters are 0 
(dashed lines) and are predicted using the two observed heights shown in the plot 
on the left.  

 

5.6 Excercises

1. Show that 2SLS will lead to OLS if the models are unrelated. Explain how this

would happen in practice.



Appendix A

Matrix algebra

These pages have been taken from lecture notes on Forest biometrics by professor

Annika Kangas.
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Matrix calculus 

 

Matrix Vector 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

npn

p

p

pn

xx

xxx
xxx

......
..........
..........

....

....

1

22221

11211

)(X  

1

2

3( 1)

..
p

p

x
x
x

x

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x  

Element xij means the jth  element of row i in matrix 

X. 

R: X[i,j] 

A matrix with only one column 

is called vector. xj is the jth 

element of vector x.  

R: x[i] 

 

A single number is called scalar.  

 

Transpose of a vector 

 

Transpose of a matrix 

 

x' = xT  

 

Rows and columns interchange. 

R: t(x) 

Xij=X'
ji 

 

 

R: t(X) 

 

(1 ) 1 2 3' ..p px x x x× ⎡ ⎤= ⎣ ⎦x

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

pnp

n

n

T
np

xx

xxx
xxx

......
..........
..........

....

....

1

22221

11211

)(X
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Example 

 

 

(4 3)

1 2 3
4 5 6
7 8 9

10 11 12

×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

X  

X<-matrix(seq(1,12), 

          ncol=3,byrow=TRUE) 

X<-rbind(1:3,4:6,7:9,10:12) 

(4 1)

1
4
7

10

×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x  

x<-X[,1] 

element x23=6          X[2,3] 

element x32=8 

element x3 = 7 

(3 4)

1 4 7 10
2 5 8 11
3 6 9 12

×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y  

Y<-t(X) 

[ ](1 4) 1 4 7 10× =x  

element x23 =8 

element x32=6 

 

Square matrix 

- has equal number of rows and 

columns 

 

11 12 1

21 22 2

( )

1

.. ..

.. ..
.. .. .. .. ..
.. .. .. .. ..

.. .. ..

n

n

n n

n nn

x x x
x x x

x x

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X  

Symmetric (square) matrix 

- xij=xji 

- for example, 

(4 4)

1 2 3 5
2 1 4 6
3 4 2 7
5 6 7 3

×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

X  
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Diagonal Diagonal matrix 

The diagonal of X includes 

elements xii 

Only diagonal has non-zero values 

 

11

22

( )

0 0 .. 0
0 0 ..
.. .. .. .. ..
0 0 0 .. 0
0 0 0 ..

n n

nn

x
x 0

x

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X  

X<-diag(x) 

 

x<-diag(X) 

 

Identity matrix Block diagonal matrix 

A diagonal matrix where all diagonal 

elements are ones.  

 

( )

1 0 0 .. 0
0 1 0 .. 0
.. .. .. .. ..
0 0 0 .. 0
0 0 0 .. 1

n n n×

⎡ ⎤
⎢ ⎥
⎢ ⎥

= = ⎢
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⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I I

11 21

12 22

( )

1 1 1

1

1

.. 0 0

.. 0 0
.. .. .. .. ..
0 0 ..
0 0 ..

..

n n

n n n n

nn nn

m

x x
x x

x x

I<-diag(rep(1,n)) 

A block diagonal matrix has m (nm by nm) square 

matrices on the diagonal.  

 

⎡ ⎤
⎢ ⎥
⎢ ⎥

x x

×

− − −

−

⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X

X 0 0
0 0
0 0 X

 

Example 
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(2 2)

(6 6) (2 2)

(2 2)

1 2 0 0 0 0
2 1 0 0 0 0
0 0 3 4 0 0
0 0 4 3 0 0
0 0 0 0 5 6
0 0 0 0 6 5

×

× ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

X 0 0
X 0

0 0 X
X 0

⎤
⎥
⎥
⎥⎦

 

Product of a matrix and a scalar 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

npn

p

p

pn

axax

axaxax
axaxxa

a

......
..........
..........

....

....

1

22221

11211

)(X  

 

Example 

 

(3 4)

1 4 7 10 3 12 21 30
3 3 2 5 8 11 6 15 24 33

3 6 9 12 9 18 27 36
×

⎡ ⎤ ⎡
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

X  

 

 

Sum of matrices 

 

The dimensions of the matrices need to be equal.  For each element of the sum matrix 

zij=xij+yij 
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11 12 1 11 12 1

21 22 2 21 22 2

( ) ( )

1 1

.. .. .. ..

.. .. .. ..
.. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. ..

p p

p p

n p n p

n np n np

x x x y y y
x x x y y y

x x y y

× ×

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢+ = +
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

X Y

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

11 11 12 12 1 1

21 21 22 22 2 2

1 1

.. ..

.. ..
.. .. .. .. ..
.. .. .. .. ..

.. .. ..

p p

p p

n n np np

x y x y x y
x y x y x y

x y x

+ + +⎡ ⎤
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦y

⎤
⎥
⎥
⎥⎦

 

 

Example 

 

(3 4) (3 4)

1 4 7 10 1 2 3 4 2 6 10 14
2 5 8 11 5 6 7 8 7 11 15 19
3 6 9 12 9 10 11 12 12 16 20 24

× ×

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢+ = + =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

X Y

Helsingin yliopisto Metsävarojen käytön laitos  

  Annika Kangas 7.11.2006 



173
Metsäbiometria / Luento 1 

 

Inner product of vectors 

[ ] ∑
=

××× =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==
p

j
jj

p

ppp yx

y

y
y
y

x..xxx
1

3

2

1

3211111

..
' yxz  

Example 

[ ]1 1 1 4 4 1

5
6

' 1 2 3 4 1 5 2 6 3 7 4 8
7
8

5 12 21 32 70

× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥= = = ⋅ + ⋅ + ⋅ + ⋅
⎢ ⎥
⎢ ⎥
⎣ ⎦

= + + + =

z x y
 

z<-x%*%y 

 

Outer product of vectors 

 

 

1

2

31 1 1 2 3'
..

p p p p

p

y
y
y x x x

y

× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡= = ⎣⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Z y x

 

1 1 1 2 1

2 1 2 2 2

3 1

1 2

.. ..

.. ..
.. .. .. ..

.. .. .. .. ..
.. ..

p

p

p p p

y x y x y x
y x y x y x
y x

y x y x y xp

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Example  
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⎢ ⎥
⎢ ⎥
⎣ ⎦

Z y x

5 1 5 2 5 3 5 4 5 10 15 20
6 1 6 2 6 3 6 4 6 12 18 24
7 1 7 2 7 3 7 4 7 14 21 28
8 1 8 2 8 3 8 4 8 16 24 32

⋅ ⋅ ⋅ ⋅

[ ]4 4 4 1 1 4

5
6

' 1 2 3 4
7
8

× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥= =

⎡ ⎤ ⎡ ⎤

=
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦

  
Z<-y%o%x 

 

Product of matrices 

11 12 1 11 12 1

21 22 2 21 22 2

( ) ( ) ( )

1 1

.. .. .. ..

.. .. .. ..
.. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. ..

p q

p q

n q n p p q

n np p pq

x x x y y y
x x x y y y

x x y y

× × ×

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

Z X Y

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

1 1 2 1 1
1 1 1

1 1 2 2 2
1 1 1

1
1 1

.. ..

.. ..

.. .. .. .. ..

.. .. .. .. ..

.. .. ..

p p p

j j j j nj
j j j

p p p

j j j j nj j
j j j

p p

nj j nj jq
j j

jx y x y x y

x y x y x y

x y x

= = =

= = =

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ y
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Example 

 

(2 3) (2 3) (3 2)

7 10
1 2 3 1 7 2 8 3 9 1 10 2 11 3 12

8 11
4 5 6 4 7 5 8 6 9 4 10 5 11 6 12

9 12
× × ×

⎡ ⎤
⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅⎡ ⎤ ⎡⎢ ⎥= = =⎢ ⎥ ⎢⎢ ⎥

⎤
⎥⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

Z X Y
⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

7 16 27 10 22 36 50 68
28 40 54 40 55 72 122 167
+ + + +⎡ ⎤

= =⎢ ⎥+ + + +⎣ ⎦
 

Z=X%*%Y 

 

Multiplying a matrix by a diagonal matrix  

11 11 12 1

22 21 22 2

( ) ( ) ( ) 33

1

0 0 .. 0 .. ..
0 0 .. 0 .. ..
0 0 .. 0 .. .. .. .. ..
.. .. .. .. .. .. .. .. .. ..
0 .. .. .. .. .. ..

m

m

n m n n n m

nn n nm

x y y y
x y y y

x

x y y

× × ×

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

Z X Y

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

11 11 11 12 11 1

22 21 22 22 22 2

1

.. ..

.. ..
.. .. .. .. ..
.. .. .. .. ..

.. .. ..

m

m

nn n nn nm

x y x y x y
x y x y x y

x y x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦y
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Matrix inverse 

  

Inverse matrix X-1 is a square matrix which fulfills  XX-1 = I 

 

Inverse of a diagonal matrix is obtained by inverting the diagonal elements. 

Helsingin yliopisto Metsävarojen käytön laitos  

0

1
11 11

1
22 22

1 1
( ) 33

1

0 0 .. 0 0 .. .. 0
0 0 .. 0 0 .. ..
0 0 .. 0 .. .. .. .. ..
.. .. .. .. .. .. .. .. .. ..
0 .. .. .. 0 .. .. ..

n n

nn nn

x x
x x

x

x x

−

−

− −
×

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

X  

 

Inverting a matrix is hard work even for small matrices. 

For a 2 by 2 matrix,  the inverse is 
a b
c d
⎡ ⎤

= ⎢
⎣ ⎦

A ⎥

1

d c
ad cb ad cb

b a
ad cb ad cb

−

−⎡ ⎤
⎢ ⎥− −= ⎢ ⎥

−⎢ ⎥
⎢ ⎥− −⎣ ⎦

A  

 

Xinv<-solve(X) 

Rules for matrix calculations 

 

 - A(BC)=(AB)C 

 - (A+B)C=AC+BC 

 - AB≠BA 

 - (AB)'=B'A' 

 - IA=AI=A 

 - (AB)-1=B-1A-1 
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Appendix B

A short story on R

R is a programming environment that includes lot of ready functions for statistical

computing. Most users just use one or some of the most common functions, such as

lm or plot.

The following page includes a R-reference card by Jonathan Baron.
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R reference card, by Jonathan Baron

Parentheses are for functions, brackets are for
indicating the position of items in a vector or matrix.
(Here, items with numbers like x1 are user-supplied
variables.)

Miscellaneous
q(): quit
<-: assign
INSTALL package1: install package1
m1[,2]: column 2 of matrix m1
m1[,2:5] or m1[,c(2,3,4,5)]: columns 2–5
m1$a1: variable a1 in data frame m1
NA: missing data
is.na: true if data missing
library(mva): load (e.g.) the mva package

Help
help(command1): get help with command1 (NOTE:

USE THIS FOR MORE DETAIL THAN THIS
CARD CAN PROVIDE.)

help.start(): start browser help
help(package=mva): help with (e.g.) package mva
apropos("topic1"): commands relevant to topic1
example(command1): examples of command1

Input and output
source("file1"): run the commands in file1.
read.table("file1"): read in data from file1
data.entry(): spreadsheet
scan(x1): read a vector x1
download.file(url1): from internet
url.show(url1), read.table.url(url1): remote
input
sink("file1"): output to file1, until sink()
write(object, "file1"): writes an object to file1
write.table(dataframe1,"file1"): writes a table

Managing variables and objects
attach(x1): put variables in x1 in search path
detach(x1): remove from search path
ls(): lists all the active objects.
rm(object1): removes object1
dim(matrix1): dimensions of matrix1
dimnames(x1): names of dimensions of x1
length(vector1): length of vector1
1:3: the vector 1,2,3
c(1,2,3): creates the same vector
rep(x1,n1): repeats the vector x1 n1 times
cbind(a1,b1,c1), rbind(a1,b1,c1): binds

columns or rows into a matrix
merge(df1,df2): merge data frames
matrix(vector1,r1,c1): make vector1 into a
matrix with r1 rows and c1 columns
data.frame(v1,v2): make a data frame from
vectors v1 and v2

as.factor(), as.matrix(), as.vector():
conversion

is.factor(), is.matrix(), is.vector(): what it
is

t(): switch rows and columns
which(x1==a1): returns indices of x1 where x1==a1

Control flow
for (i1 in vector1): repeat what follows
if (condition1) ...else ...: conditional

Arithmetic
%*%: matrix multiplication
%/%, ^, %%, sqrt(): integer division, power,

modulus, square root

Statistics
max(), min(), mean(), median(), sum(), var():

as named
summary(data.frame): prints statistics
rank(), sort() rank and sort
ave(x1,y1): averages of x1 grouped by factor y1
by(): apply function to data frame by factor
apply(x1,n1,function1): apply function1 (e.g.

mean) to x by rows (n1=1) or columns (n2=2)
tapply(x1,list1,function1): apply function to

x1 by list1
table(): make a table
tabulate(): tabulate a vector

basic statistical analysis
aov(), anova(), lm(), glm(): linear and

nonlinear models, anova
t.test(): t test
prop.test(), binom.test(): sign test
chisq.test(x1): chi-square test on matrix x1
fisher.test(): Fisher exact test
cor(a): show correlations
cor.test(a,b): test correlation
friedman.test(): Friedman test

some statistics in mva package
prcomp(): principal components
kmeans(): kmeans cluster analysis
factanal(): factor analysis
cancor(): canonical correlation

Graphics
plot(), barplot(), boxplot(), stem(),

hist(): basic plots
matplot(): matrix plot
pairs(matrix): scatterplots
coplot(): conditional plot
stripplot(): strip plot
qqplot(): quantile-quantile plot
qqnorm(), qqline(): fit normal distribution
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