Partitioning PostgreSQL

Edwin Grubbs
edwin@grubbs.org
http://mysqgl.meetup.com/284/

PostgreSQL can only optimize SELECT queries when using Range partitioning or
List partitioning.

Partitioning a table is normally only worthwhile when the size of the table exceeds
physical memory.

PostgreSQL Partitioning Docs

- http://www.postgresqgl.org/docs/8.3/interactive/ddl-partitioning.html
PostgreSQL Tablespaces Docs

- http://www.postgresqgl.org/docs/8.3/interactive/manage-ag-tablespaces.html

PL/Proxy stored procedure language makes it easy to call stored procedures on
other databases servers over the network, and it provides the ability to partition
your data amongst remote servers (sharding) by hashing field values.

- https://developer.skype.com/SkypeGarage/DbProjects/PIProxy
- http://kaiv.wordpress.com/2007/07/27/postgresql-cluster-partitioning-with-plproxy-part-i/

mailto:edwin@grubbs.org
http://www.postgresql.org/docs/8.3/interactive/ddl-partitioning.html
http://www.postgresql.org/docs/8.3/interactive/manage-ag-tablespaces.html
https://developer.skype.com/SkypeGarage/DbProjects/PlProxy

Implementing Partitioning

1.Create a master table from which all the child tables will inherit.
CREATE TABLE shipment (

id SERIAL PRIMARY KEY,
address TEXT NOT NULL,

shipping date TIMESTAMP NOT NULL) ;

2.Create child tables to serve as each partition of the master table using

table constraints to define the allowed key values in each partition.
CREATE TABLE shipment part 2008 (

CHECK (shipping date >= DATE '2008-01-01"

AND shipping date < DATE '2009-01-01")
) INHERITS (shipment);

CREATE TABLE shipment part pre2008 (

CHECK (shipping date < DATE '2008-01-01")
) INHERITS (shipment)

3.Create an index on the key column(s) for each partition.
CREATE INDEX shipping date 2008 ON shipment part 2008 (shipping date);
CREATE INDEX shipping date pre2008 ON shipment part pre2008 (shipping date);

4.Ensure that the constraint exclusion configuration parameter is enabled in
postgresql.conf so that queries will be optimized for partitioning (child

tables will not be searched for values they can't contain).
constraint exclusion = on

Implementing Partitioning (continued)

5. Optionally, define a trigger or rule to redirect data inserted into the master table
to the appropriate partition. An update trigger is not necessary.

CREATE OR REPLACE FUNCTION shipment insert ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.shipping date >= DATE '2008-01-01"
AND NEW.shipping date < DATE '2009-01-01') THEN
INSERT INTO shipment part 2008 VALUES (NEW.*);
ELSIF (NEW.shipping date < DATE '2008-01-01"') THEN
INSERT INTO shipment part pre2008 VALUES (NEW.*);
ELSE
RAISE EXCEPTION 'Date out of range. Fix the shipment insert()
function!';
END IF;
RETURN NULL;
END;
SS9
LANGUAGE plpgsqgl;

CREATE TRIGGER shipment insert trigger
BEFORE INSERT ON shipment
FOR EACH ROW EXECUTE PROCEDURE shipment insert();

Using Partitioned Tables

INSERT INTO shipment (address, shipping date) VALUES ('Alaska', '2008-08-08");
INSERT INTO shipment (address, shipping date) VALUES ('Texas', '2007-07-07'");
UPDATE shipment SET address = 'Dakota' WHERE address = 'Alaska';

SELECT * FROM ONLY shipment;
id | address | shipping date

SELECT * FROM shipment;

id | address | shipping date
_____|_ _________ _|_ _____________________
1 | Dakota | 2008-08-08 00:00:00
2 | Texas | 2007-07-07 00:00:00

(2 rows)

SELECT * FROM shipment part 2008;
id | address | shipping date
_____|_ _________ _|_ _____________________
1 | Dakota | 2008-08-08 00:00:00
(1 row)

SELECT * FROM shipment part pre2008;
id | address | shipping date
_____|_ _________ _|_ ____________ : ________
2 | Texas | 2007-07-07 00:00:00
(1 row)

Verify Query Optimization

EXPLAIN SELECT * FROM shipment WHERE shipping date > '2008-02-01';
QUERY PLAN
Result (cost=0.00..45.43 rows=734 width=44)
-> Append (cost=0.00..45.43 rows=734 width=44)
-> Seq Scan on shipment (cost=0.00..23.75 rows=367 width=44)
Filter: (shipping date > '2008-02-01 00:00:00'::timestamp without time =zone)
-> Bitmap Heap Scan on shipment part 2008 shipment (cost=7.09..21.68 rows=367 width=44)
Recheck Cond: (shipping date > '2008-02-01 00:00:00'::timestamp without time zone)
-> Bitmap Index Scan on shipping date 2008 (cost=0.00..7.00 rows=367 width=0)
Index Cond: (shipping date > '2008-02-01 00:00:00'::timestamp without time zone)
(8 rows)

EXPLAIN SELECT * FROM shipment WHERE shipping date > '2007-02-01';
QUERY PLAN
Result (cost=0.00..67.11 rows=1101 width=44)
-> Append (cost=0.00..67.11 rows=1101 width=44)
-> Seq Scan on shipment (cost=0.00..23.75 rows=367 width=44)
Filter: (shipping date > '2007-02-01 00:00:00'::timestamp without time zone)
-> Bitmap Heap Scan on shipment part 2008 shipment (cost=7.09..21.68 rows=367 width=44)
Recheck Cond: (shipping date > '2007-02-01 00:00:00"'::timestamp without time zone)
-> Bitmap Index Scan on shipping date 2008 (cost=0.00..7.00 rows=367 width=0)
Index Cond: (shipping date > '2007-02-01 00:00:00'::timestamp without time zone)
-> DBitmap Heap Scan on shipment part pre2008 shipment (cost=7.09..21.68 rows=367 width=44)
Recheck Cond: (shipping date > '2007-02-01 00:00:00"'::timestamp without time zone)
-> Bitmap Index Scan on shipping date pre2008 (cost=0.00..7.00 rows=367 width=0)
Index Cond: (shipping date > '2007-02-01 00:00:00'::timestamp without time zone)
(12 rows)

Query Planning Problem

Constraint exclusion only works when the query's WHERE clause contains
constants. The planner analyzes the query before values from parameters (in
prepared statements) or stored procedures are substituted in the query. For the
same reason, "stable" functions such as CURRENT DATE must be avoided.

The now() function in the query below definitely returns a value after 2008-01-01,
but it ignores the constraint and still searches in shipment_part_pre2008.

You can always query a child table directly instead of the parent table to avoid
depending on the optimizer.

EXPLAIN SELECT * FROM shipment WHERE shipping date > now();
QUERY PLAN
Result (cost=0.00..71.70 rows=1101 width=44)
-> Append (cost=0.00..71.70 rows=1101 width=44)
-> Seq Scan on shipment (cost=0.00..26.50 rows=367 width=44)
Filter: (shipping date > now())
-> Bitmap Heap Scan on shipment part 2008 shipment (cost=7.10..22.60 rows=367 width=44)
Recheck Cond: (shipping date > now())
-> Bitmap Index Scan on shipping date 2008 (cost=0.00..7.01 rows=367 width=0)
Index Cond: (shipping date > now())
-> Bitmap Heap Scan on shipment part pre2008 shipment (cost=7.10..22.60 rows=367 width=44)
Recheck Cond: (shipping date > now())
-> Bitmap Index Scan on shipping date pre2008 (cost=0.00..7.01 rows=367 width=0)
Index Cond: (shipping date > now())
(12 rows) 6

Table Inheritance

Child tables do inherit:
- NOT NULL constraints (even if part of a primary key constraint)

- Table constraints (i.e. CHECK() constraints)
— Column default values (even if part of a primary key constraint)

Child tables do not inherit:

- Indexes (even if part of a primary key constraint)
- Foreign key constraints

- Permissions

- Ownership

Inherited changes to the parent table are propagated to the children.

You can't rename inherited columns on child tables. You must rename the column on the
parent table.

You can change the NOT NULL constraint and the default value for inherited columns on a
child table, but changing these items on the parent will still propagate to the children.

You can use ALTER TABLE to enable or disable inheritance on child tables.

Tablespaces

Tablespaces make it easy to specify a different location on the filesystem to create new tables and indexes.

For testing purposes, you can mount a ramdisk under Linux using tmpfs. Surprisingly, the tmpfs partition
actually didn't improve performance.

mkdir /mnt/dbspace2/

mount -t tmpfs -o size=100M,nocatime tmpfs /mnt/dbspace2/
mkdir /mnt/dbspace2/postgresql

mkdir /mnt/dbspace2/postgresqgl/data

chown postgres:postgres /mnt/dbspace2/postgresqgl/data
chmod 0700 /mnt/dbspace2/postgresqgl/data

You can change the tablespace for all new tables and indexes being created by setting this variable.

SET default tablespace = spacel;

Or you can specify the tablespace in the CREATE TABLE or CREATE INDEX statement.

CREATE TABLESPACE dbspace2 LOCATION '/mnt/dbspace2/postgresqgl/data’;
CREATE TABLE shipment part 2008 (

CHECK (shipping date >= DATE '2008-01-01' AND shipping date < DATE '2009-01-01")
) INHERITS (shipment) TABLESPACE dbspace?2;

CREATE INDEX shipping date 2008 ON shipment part 2008 (shipping date) TABLESPACE dbspaceZ2;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

