Microsoft®
ﬁ SQL Server2008r2

Diagnosing and Resolving Latch Contention
on SQL Server

Microsoft Corporation
Published: June, 2011

Summary

This paper provides in-depth information about the methodology the Microsoft SQL Server
Customer Advisory Team (SQLCAT) team uses to identify and resolve issues related to page
latch contention observed when running SQL Server 2008 and SQL Server 2008 R2 applications

on high-concurrency systems.
Microsoft

Copyright

This document is provided “as-is”. Information and views expressed in this document, including
URL and other Internet Web site references, may change without notice. You bear the risk of
using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real
association or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any
Microsoft product. You may copy and use this document for your internal, reference purposes.

© 2011 Microsoft Corporation. All rights reserved.

Contents

Diagnosing and Resolving Latch Contention 0N SQL SEIVETcuvvvieiiiiiiiieiieee e cesiieee e e e 5
WHAL'S IN ThiS PAPEIT ...ttt sttt et bt e e s bb e e e s bbn e e e s annreee s 5
o 0111 T=To [[1= | SRR 6

Diagnosing and Resolving Latch Contention ISSUESueieiiiiiieiiiiiie e 7
T I g TE ST =T ok 1T PP OTPPR 7

What is SQL Server LatCh CONtENTIONTcoieiiiiiiieieeece e 7
How does SQL Server Use LatChesS?ooooooiiiiiiiii 8
SQL Server Latch Modes and Compatibilityoocueiiiiiiiiii e 9
SQL Server SuperLatches / SublatChes ... 10
LAtCN VWit Ty DS i 12
Symptoms and Causes of SQL Server Latch Contention..........cccuvvvevieeeiiiiiiiieiiee e 12

Example of LatCh CONtENTION...... ... s 13
Factors Affecting Latch Contention..............coooo i 14

Diagnosing SQL Server Latch Contention ..., 15
Tools and Methods for Diagnosing Latch Contentioncoooiiiieiiiiiie e 15
Indicators of LatCh CONENTIONooieeiiiiiiee et e e e e e e e e neneeeeees 16
Analyzing Current Wait BUffer LAtChesu s 19
SQL Server Latch Contention SCENATMOSuvuiiiieeiiiiiiiiiieeee e sesiie e e e e e e e e e e s ssnenreeeeaeeees 22

Last page/trailing page iNSert CONENTIONuiiiiiiiiiiiieie e 22
Latch contention on small tables with a non-clustered index and random inserts (queue table)

... 25
Latch contention on page free space (PFS) PAGEScooveiiiiiiiiieiiiiie e 28

Handling Latch Contention for Different Table Patterns...........cccccvviiiiiiiiineee e, 29

Use a Non Sequential Leading INdex KeYccoooeiiiiiiiii 29
Option 1 — Use a column within the table to distribute values across the index key range.... 29
Option 2 — Use a GUID as the Leading Key Column of the INdeXccccceeiviiiiiniineennnn. 32

Use Hash Partitioning with a Computed ColuMN..........coooiiiiiii e, 33

Summary of Techniques Used to Address Latch Contentionccccoooo, 37

Walkthrough: Diagnosing a SQL Server Latch Contention Scenario..........ccccceeeeeeeieeieiieeieieeeennns 38

SYMPLOM: HOt LAICNES ...ttt et e s nneeee s 39
Isolating the Object Causing Latch CONtENtioNcciiiiiiiiiiiiiiieee e 39
Alternative Technique to Isolate the Object Causing Latch Contentioncccccceeeeiiinene 41
SUMMArY and RESUILS ... s e e s 44

Appendix: Secondary Technique for Resolving Latch Contentioncccccoeviiiiiiieieeenniiiiieeeen. 45
Padding Rows to Ensure Each Row Occupies a Full Page...........ccceeviiieiiiiiieeiiieee e 45

Appendix: SQL Server Latch Contention SCHPLSccoivuiiieiiiiiieiiiiie e 46

SQL Queries for Diagnosing Latch Contentionc..vviiiiie i 46

Query sys.dm_os_waiting_tasks Ordered by SessSion IDccccevveeeeiiiiiiiieenee e 46
Query sys.dm_os_waiting_tasks Ordered by Wait DUrationccccceeviiiveiniiinenniiiee e, 47
Calculate Waits OVer @ TiMe PEriOQ........c.uuiiiiiiiie it 47
Query Buffer Descriptors to Determine Objects Causing Latch Contentioncccccceeee... 50

Hash Partitioning SCIIPL.......coiiiiiiiiiiiie ettt e et e e st e e e e sbreeeeaaes 52

Diagnosing and Resolving Latch Contention
on SQL Server

Welcome to the Diagnosing and Resolving Latch Contention on SQL Server paper. While
working with mission critical customer systems the Microsoft SQL Server Customer Advisory
Team (SQLCAT) have developed a methodology which we use to identify and resolve particular
resource contention issues observed when running SQL Server 2008 and SQL Server 2008 R2
on high concurrency systems.

We created this guide to provide in-depth information about how we use this methodology to
identify and resolve resource contention issues related to page latch contention observed when
running SQL Server 2008 and SQL Server 2008 R2 applications on high concurrency systems
with certain workloads. In recent years, the traditional approach of increasing computer
processing capacity with faster CPUs has been augmented by building computers with multiple
CPUs and multiple cores per CPU. As of this writing, the Intel Nehalem CPU architecture
accommodates up to 8 cores per CPU, which when used in an 8 socket system provides 64
logical processors, which can then be doubled to 128 logical processors through the use of
hyper-threading technology. As the number of logical processors on available to SQL Server
increase so too does the possibility that concurrency related issues may occur when logical
processors compete for resources.

The recommendations and best practices documented here are based on real-world experience
during the development and deployment of real world OLTP systems.

To download a copy of this guide in chm, pdf, or docx form, go to
http://go.microsoft.com/fwlink/?Linkld=223367.

This paper applies to SQL Server 2005 and later.

[.
What's in this paper?

This guide describes how to identify and resolve latch contention issues observed when running
SQL Server 2008/R2 applications on high concurrency systems with certain workloads.
Specifically, this guide includes the following main section:

e Diagnosing and Resolving Latch Contention Issues —The Diagnosing and Resolving

Latch Contention Issues section analyzes the lessons learned by the SQLCAT team from
diagnosing and resolving latch contention issues.

http://go.microsoft.com/fwlink/?LinkId=223367

Acknowledgments

We in the SQL Server User Education team gratefully acknowledge the outstanding contributions
of the following individuals for providing both technical feedback as well as a good deal of content
for this paper:

Authors

e Ewan Fairweather, Microsoft SQLCAT

e Mike Ruthruff, Microsoft SQLCAT

Contributors

e Thomas Kejser, Microsoft Program Management

e Steve Howard, Microsoft Program Management

Technical Reviewers

e Fabricio Voznika, Microsoft Development

e Lindsey Allen, Microsoft SQLCAT

e Alexei Khalyako, Microsoft Program Management

e Prem Mehra, Microsoft Program Management

e Paul S. Randal, SQLskills.com

e Benjamin Wright-Jones, Microsoft Consulting Services

e Pranab Mazumdar, Microsoft Product Support Services

e Gus Apostol, Microsoft Program Management

Summary

As the number of CPU cores on servers continues to increase, the associated increase in
concurrency can introduce contention points on data structures which must be accessed in a
serial fashion within the database engine. This is especially true for high throughput / high
concurrency transaction processing (OLTP) workloads. There are a number of tools, techniques
and ways to approach these challenges as well as practices that can be followed in designing

applications which may help to avoid them altogether. This paper will discuss a particular type of
contention on data structures which use spinlocks to serialize access to these data structures.

Diagnosing and Resolving Latch Contention
Issues

In this section we will analyze the lessons learned by the SQLCAT team from diagnosing and
resolving latch contention issues, which are one class of concurrency issues observed in real
customer workloads on high scale systems.

In This Section

What is SOL Server Latch Contention?

Diagnosing SOL Server Latch Contention

Handling Latch Contention for Different Table Patterns

Walkthrough: Diagnosing a SOL Server Latch Contention Scenario

Appendix: Secondary Technigue for Resolving Latch Contention

Appendix: SOL Server Latch Contention Scripts

What is SQL Server Latch Contention?

Latches are lightweight synchronization primitives that are used by the SQL Server engine to
guarantee consistency of in-memory structures including; index, data pages and internal
structures such as non-leaf pages in a B-Tree. SQL Server uses buffer latches to protect pages in
the buffer pool and 1/O latches to protect pages not yet loaded into the buffer pool. Whenever
data is written to or read from a page in the SQL Server buffer pool a worker thread must first
acquire a buffer latch for the page. There are various buffer latch types available for accessing
pages in the buffer pool including exclusive latch (PAGELATCH_EX) and shared latch
(PAGELATCH_SH). When SQL Server attempts to access a page which is not already present in
the buffer pool, an asynchronous 1/O is posted to load the page into the buffer pool. If SQL Server
needs to wait for the I/O subsystem to respond it will wait on an exclusive (PAGEIOLATCH_EX)
or shared (PAGEIOLATCH_SH) I/O latch depending on the type of request; this is done to
prevent another worker thread from loading the same page into the buffer pool with an
incompatible latch. Latches are also used to protect access to internal memory structures other
than buffer pool pages; these are known as Non-Buffer latches.

Contention on page latches is the most common scenario encountered on multi-CPU systems
and so most of this paper will focus on these.

Latch contention occurs when multiple threads concurrently attempt to acquire incompatible
latches to the same in-memory structure. As a latch is an internal control mechanism; the SQL
engine automatically determines when to user them. Because the behavior of latches is
deterministic, application decisions including schema design can affect this behavior. The goal of
this paper is to provide the reader with the following:

e Background information on how latches are used by SQL Server.

e Tools used to investigate latch contention.

e How to determine if the amount of contention being observed is problematic.

We will discuss some common scenarios and how best to handle them to alleviate contention.

How does SQL Server Use Latches?

A page in SQL Server is 8KB and can store multiple rows. To increase concurrency and
performance, buffer latches are held only for the duration of the physical operation on the page,
unlike locks which are held for the duration of the logical transaction.

Latches are internal to the SQL engine and are used to provide memory consistency, whereas
locks are used by SQL Server to provide logical transactional consistency. The following table
compares latches to locks:

Structu | Purpose Controll | Performance | Exposed by
re ed by cost
Latch | Guarantee | SQL Performance sys.dm_o0s_ wait_stats (Transact-SQL)
consistenc | Server | costis low. (http://go.microsoft.com/fwlink/p/?Linkld=212
y of in- engine | To allow for 508) - Provides information on
memory only. maximum PAGELATCH, PAGEIOLATCH and LATCH
structures. concurrency wait types (LATCH_EX, LATCH_SH is used
and provide to group all non-buffer latch waits).
maximum sys.dm_os latch_stats (Transact-SQL)
performance (http://go.mi.crosoft.c<.)m/f\.NIink/p/?LinkId=212
latches are 510) — Provides detlalled information about
non-buffer latch waits.
held only for

the duration
of the
physical
operation on
the in-
memory
structure,
unlike locks
which are
held for the
duration of
the logical
transaction.

sys.dm _os latch_stats (Transact-SQL)
(http://go.microsoft.com/fwlink/p/?Linkld=223
167) - This DMV provides aggregated waits
for each index, which is very useful for
troubleshooting latch related performance
issues.

http://go.microsoft.com/fwlink/p/?LinkId=212508
http://go.microsoft.com/fwlink/p/?LinkId=212510
http://go.microsoft.com/fwlink/p/?LinkId=223167

Structu | Purpose Controll | Performance | Exposed by

re

ed by cost

Lock Guarantee | Can be | Performance |® sys.dm_tran locks (Transact-SQL)

consistenc | controlle | cost is high (http://go.microsoft.com/fwlink/p/?Linkld=179
y of d by relative to 926).
transaction | user. latches as e sys.dm_exec sessions (Transact-SQL)
S. locks must (http://go.microsoft.com/fwlink/p/?Linkld=182
be held for 932).
th 10N | e
e duration 5 Note
of the

For more information about querying
SQL Server to obtain information about
transaction locks see Displaying Locking
Information (Database Engine)
(http://go.microsoft.com/fwlink/p/?Linkld
=212519).

transaction.

SQL Server Latch Modes and Compatibility

Some latch contention is to be expected as a normal part of the operation of the SQL Server
engine. It is inevitable that multiple concurrent latch requests of varying compatibility will occur on
a high concurrency system. SQL Server enforces latch compatibility by requiring the incompatible
latch requests to wait in a queue until outstanding latch requests are completed.

Latches are acquired in one of 5 different modes, which relate to level of access. SQL Server
latch modes can be summarized as follows:

KP — Keep latch, ensures that the referenced structure cannot be destroyed. Used when a
thread wants to look at a buffer structure. Because the KP latch is compatible with all latches
except for the destroy (DT) latch, the KP latch is considered to be “lightweight”’, meaning that
the impact on performance when using it is minimal. Since the KP latch is incompatible with
the DT latch, it will prevent any other thread from destroying the referenced structure, for
example a KP latch will prevent the structure it references from being destroyed by the
lazywriter process. For more information about how the lazywriter process is used when SQL
Server writes to and frees up buffer pages see Freeing and Writing Buffer Pages
(http://go.microsoft.com/fwlink/p/?Linkld=223176).

SH — Shared latch, required to read a page structure.

UP — Update latch, is compatible with SH (Shared latch) and KP, but no others and therefore
will not allow an EX latch to write to the referenced structure.

EX — Exclusive latch, blocks other threads from writing to or reading from the referenced
structure. One example of use would be to modify contents of a page for torn page
protection.

http://go.microsoft.com/fwlink/p/?LinkId=179926
http://go.microsoft.com/fwlink/p/?LinkId=182932
http://go.microsoft.com/fwlink/p/?LinkId=212519
http://go.microsoft.com/fwlink/p/?LinkId=212519
http://go.microsoft.com/fwlink/p/?LinkId=223176

e DT — Destroy latch, must be acquired before destroying contents of referenced structure. For
example a DT latch must be acquired by the lazywriter process to free up a clean page
before adding it to the list of free buffers available for use by other threads.

Latch modes have different levels of compatibility, for example, a shared latch (SH) is compatible
with an update (UP) or keep (KP) latch but incompatible with a destroy latch (DT). Multiple
latches can be concurrently acquired on the same structure as long as the latches are
compatible. When a thread attempts to acquire a latch held in a mode that is not compatible, it is
placed into a queue to wait for a signal indicating the resource is available. A spinlock of type
SOS_Task is used to protect the wait queue by enforcing serialized access to the queue. This
spinlock must be acquired to add items to the queue. The SOS_Task spinlock also signals
threads in the queue when incompatible latches are released, allowing the waiting threads to
acquire a compatible latch and continue working. The wait queue is processed on a first in, first
out (FIFO) basis as latch requests are released. Latches follow this FIFO system to ensure
fairness and to prevent thread starvation.

Latch mode compatibility is listed in the table below where Y indicates compatibility and N
indicates incompatibility:

KP SH UpP EX DT
KP Y Y Y Y N
SH Y Y Y N N
upP Y Y N N N
EX Y N N N N
DT N N N N N

For more information about latch modes and scenarios under which various latch modes are
acquired, see Q&A on Latches in the SQL Server Engine
(http://go.microsoft.com/fwlink/p/?Linkld=212539).

SQL Server SuperLatches / Sublatches

With the increasing presence of NUMA based multiple socket / multi-core systems, SQL Server
2005 introduced SuperLatches, also known as sublatches, which are effective only on systems
with 32 or more logical processors. Superlatches improve efficiency of the SQL engine for certain
usage patterns in highly concurrent OLTP workloads; for example when certain pages have a
pattern of very heavy read-only shared (SH) access, but are written to rarely. An example of a
page with such an access pattern is a B-tree (i.e. index) root page; the SQL engine requires that
a shared latch is held on the root page when a page-split occurs at any level in the B-tree. In an
insert heavy high concurrency OLTP workload the number of page splits will increase broadly in
line with throughput, which can degrade performance. SuperLatches can enable increased

10

http://go.microsoft.com/fwlink/p/?LinkId=212539

performance for accessing shared pages where multiple concurrently running worker threads
require SH latches. To accomplish this, the SQL Server Engine will dynamically promote a latch
on such a page to a SuperLatch. A SuperLatch partitions a single latch into an array of sublatch
structures, 1 sublatch per partition per CPU core, whereby the main latch becomes a proxy
redirector and global state synchronization is not required for read-only latches. In doing so, the
worker, which is always assigned to a specific CPU, only needs to acquire the shared (SH)
sublatch assigned to the local scheduler.

Acquisition of compatible latches, such as a shared Superlatch uses fewer resources and scales
access to hot pages better than a non-partitioned shared latch because removing the global state
synchronization requirement significantly improves performance by only accessing local NUMA
memory. Conversely, acquiring an exclusive (EX) SuperLatch is more expensive than acquiring
an EX regular latch as SQL must signal across all sublatches, When a SuperLatch is observed to
use a pattern of heavy EX access, the SQL Engine can demote it after the page is discarded from
the buffer pool. The diagram below depicts a normal latch and a partitioned SuperLatch:

SQL Server Superlatch

Super Latch

Latch

Latch

Wait List

" State

Sub Latch 1

Sub Latch 2

Sub Latch 3

Sub Latch 4

Wait List
State

Wait List
State

Wait List
State

Wait List
State

Super Latch

Wait List
State

Sched 1

Sched 2

Sched 3

Sched 4

Sched 1

Sched 2

Sched 3

Sched 4

Use the SQL Server:Latches object and associated counters in Performance Monitor to gather
information about SuperLatches, including the number of SuperLatches, SuperLatch promotions
per second, and SuperLatch demotions per second. For more information about the SQL
Server:Latches object and associated counters, see SQL Server, Latches Object
(http://go.microsoft.com/fwlink/p/?Linkld=214537)

For more information about SQL Server SuperLatches, see How It Works: SQL Server
SuperlLatching / Sub-latches (http://go.microsoft.com/fwlink/p/?Linkld=214538).

11

http://go.microsoft.com/fwlink/p/?LinkId=214537
http://go.microsoft.com/fwlink/p/?LinkId=214538
http://go.microsoft.com/fwlink/p/?LinkId=214538

Latch Wait Types

Cumulative wait information is tracked by SQL Server and can be accessed using the Dynamic
Management View (DMW) sys.dm_os_wait_stats. SQL Server employs three latch wait types as
defined by the corresponding “wait_type” in the sys.dm_os_wait_stats DMV:

1. Buffer (BUF) latch: used to guarantee consistency of index and data pages for user objects.
They are also used to protect access to data pages that SQL Server uses for system objects.
For example pages that manage allocations are protected by buffer latches. These include
the Page Free Space (PFS), Global Allocation Map (GAM), Shared Global Allocation Map
(SGAM) and Index Allocation Map (IAM) pages. Buffer latches are reported in
sys.dm_os_wait_stats with a wait_type of PAGELATCH_*.

2. Non-buffer (Non-BUF) latch: used to guarantee consistency of any in-memory structures
other than buffer pool pages. Any waits for non-buffer latches will be reported as a wait_type
of LATCH_*.

3. IO latch: a subset of buffer latches that guarantee consistency of the same structures
protected by buffer latches when these structures require loading into the buffer pool with an
I/0 operation. 10 latches prevent another thread loading the same page into the buffer pool
with an incompatible latch. Associated with a wait_type of PAGEIOLATCH_*.

If you see significant PAGEIOLATCH waits it means that SQL Server is waiting on
the I/O subsystem. While a certain amount of PAGEIOLATCH waits is expected and
normal behavior, if the average PAGEIOLATCH wait times are consistently above 10
milliseconds (ms) you should investigate why the I/O subsystem is under pressure.
For more information about how to analyze the characteristics of 1/O patterns in the
SQL Server and how they relate to physical storage configuration see Analyzing I/O
Characteristics and Sizing Storage Systems for SQL Server Database Applications
(http://go.microsoft.com/fwlink/p/?Linkld=215158).

A Note

If when examining the sys.dm_os_wait_stats DMV you encounter non-buffer latches,
sys.dm_os_latch_waits must be examined to obtain a detailed breakdown of

cumulative wait information for non-buffer latches. All buffer latch waits are classified
under the BUFFER latch class, the remaining are used to classify non-buffer latches.

Symptoms and Causes of SQL Server Latch
Contention

On a busy high-concurrency system, it is normal to see active contention on structures that are
frequently accessed and protected by latches and other control mechanisms in SQL Server. It is
considered problematic when the contention and wait time associated with acquiring latch for a
page is enough to reduce resource (CPU) utilization which hinders throughput.

12

http://go.microsoft.com/fwlink/p/?LinkId=215158
http://go.microsoft.com/fwlink/p/?LinkId=215158

Example of Latch Contention

In the diagram below the blue line represents the throughput in SQL Server, as measured by
Transactions per second; the black line represents average page latch wait time. In this case
each transaction performs an INSERT into a clustered index with a sequentially increasing
leading value, such as when populating an IDENTITY column of data type bigint. As the number
of CPUs increase to 32 it is evident that the overall throughput has decreased and the page latch
wait time has increased to approximately 48 milliseconds as evidenced by the black line. This
inverse relationship between throughput and page latch wait time is a common scenario that is
easily diagnosed.

Throughput Decreases as Concurrency Increases

@ Performance Monitor [_ O]
(%) File Action Miew Window Help = !Iﬂ_
| ¥ m | B

M| P E - X o =M

8 CPU Cores 16 CPU Cores 24 CPU Cores 32 CPU Cores

Insert Threads:

8, 16, 32, 64, 128, 256, 512

. sl dllg | il liH
LR 12:30:00PM Z:00:00PM 33000PM S:00:00PM 6:30:00PM B:00:00PM SI0:00PM 1L0O:00PM 12:30:00AM T
& | o
Last | 0.167 Average | 1,723 Minimum | 0,000 Masimm | 417.000 Durakion 16:18:25

Performance when latch contention is resolved

As the diagram below illustrates, SQL Server is no longer bottlenecked on page latch waits and
throughput is increased by 300% as measured by transactions per second. This was
accomplished with the Use Hash Partitioning with a Computed Column technique described
later in this paper. This performance improvement is directed at systems with high numbers of
cores and a high level of concurrency.

13

Throughput improvements realized with hash partitioning

on
W) Fde Action View Window Help =l =]

4 mp | | e | H e
EEERE A ERN]
8 CPU Cores 16 CPU Cores 24 CPU Cores 32 CPU Cores
200 . 51 M
Insert Threads: hal A
8,16, 32, 64, 128, 256, jr
M y A
1 m M
i 3000 AM L3000 AM 123000 M 1:30:00 FM 2:30:00 PM 313000 FM £:30:00 P 5:30:00 PM SEa
1 [T i |
Last [0.000 Average €528 Minknum 0.000 Maxirnuen 1,431,000 Duration SisHE

Factors Affecting Latch Contention

Latch contention that hinders performance in OLTP environments is usually caused by high
concurrency related to one or more of the following factors:

Factor Details

High number of logical CPUs used by | Latch contention can occur on any multi-core system. In
SQL Server SQLCAT experience excessive latch contention, which
impacts application performance beyond acceptable
levels, has most commonly been observed on systems
with 16+ CPU cores and may increase as additional
cores are made available.

Schema design and access patterns | Depth of B-tree, clustered and non-clustered index
design, size and density of rows per page, and access
patterns (read/write/delete activity) are factors that can
contribute to excessive page latch contention.

High degree of concurrency at the Excessive page latch contention typically occurs in
application level conjunction with a high level of concurrent requests from
the application tier.

4 Note

14

Factor Details

There are certain programming practices that can
also introduce a high number of requests for a
specific page. See the SQLCAT technical note,
Table-Valued Functions and tempdb Contention
(http://go.microsoft.com/fwlink/p/?LinkID=214993)
for an example scenario with mitigation

strategies.
Layout of logical files used by SQL Logical file layout can affect the level of page latch
Server databases contention caused by allocation structures such as Page

Free Space (PFS), Global Allocation Map (GAM), Shared
Global Allocation Map (SGAM) and Index Allocation Map
(IAM) pages. For more information see TempDB
Monitoring and Troubleshooting: Allocation Bottleneck
(http://go.microsoft.com/fwlink/p/?LinkID=221784).

I/O subsystem performance Significant PAGEIOLATCH waits indicate SQL Server is
waiting on the I/O subsystem. For more information about
how to analyze the characteristics of I/O patterns in the
SQL Server and how they relate to physical storage
configuration see Analyzing 1/O Characteristics and
Sizing Storage Systems for SQL Server Database

Applications
(http://go.microsoft.com/fwlink/p/?Linkld=215158).

Diagnosing SQL Server Latch Contention

This topic provides information for diagnosing SQL Server latch contention to determine if it is
problematic to your environment.

Tools and Methods for Diagnosing Latch
Contention

The primary tools used to diagnose latch contention are:

1. Performance Monitor to monitor CPU utilization and wait times within SQL Server and
establish whether there is a relationship between CPU utilization and latch wait times.

2. The SQL Server DMV’s which can be used to determine the specific type of latch that is
causing the issue and the affected resource.

3. In some cases memory dumps of the SQL Server process must be obtained and analyzed
with Windows debugging tools.

15

http://go.microsoft.com/fwlink/p/?LinkID=214993
http://go.microsoft.com/fwlink/p/?LinkID=221784
http://go.microsoft.com/fwlink/p/?LinkID=221784
http://go.microsoft.com/fwlink/p/?LinkId=215158
http://go.microsoft.com/fwlink/p/?LinkId=215158
http://go.microsoft.com/fwlink/p/?LinkId=215158

This level of advanced troubleshooting is typically only required if troubleshooting
non-buffer latch contention. You may wish to engage Microsoft Product Support
Services for this type of advanced troubleshooting.
The technical process for diagnosing latch contention can be summarized in the following steps:
1. Determine that there is contention which may be latch related (see section above).

2. Use the DMV views provided in Appendix: SQL Server Latch Contention Scripts to determine
the type of latch and resource(s) affected.

3. Alleviate the contention using one of the techniques described in Handling Latch Contention
for Different Table Patterns.

Indicators of Latch Contention

As stated previously, latch contention is only problematic when the contention and wait time
associated with acquiring page latches prevents throughput from increasing when CPU resources
are available. To determine an acceptable amount of contention requires a holistic approach
which considers performance and throughput requirements together with available 1/0 and CPU
resources. This section will walk you through determining the impact of latch contention on
workload as follows:

1. Measure overall wait times during a representative test.

2. Rank them in order.

3. Determine the proportion of those that are related to latches.

Cumulative wait information is available from the sys.dm_os_wait_stats DMV. The most common
type of latch contention is buffer latch contention, observed as an increase in wait times for
latches with a wait_type of PAGELATCH_*. Non-buffer latches are grouped under the LATCH*
wait type. As the diagram below illustrates you should first take a cumulative look at system waits
using the sys.dm_os_wait_stats DMV to determine the percentage of the overall wait time caused
by buffer or non-buffer latches. If you encounter non-buffer latches the sys.dm_os_latch_stats
DMV must also be examined.

The following diagram describes the relationship between the information returned by the
sys.dm_os_wait_stats and sys.dm_os_latch_stats DMVs.

16

Latch Waits

sys.dm_os_wait_stats

wait type &% wait Time
PAGELATCH_SH BE.4%
PAGELATCH_EX 8.2%
sys.dm_os_latch_stats
LATCH_SH 1.5%%
ki it_til

LATCH_EX - latch_class wait_time_ms

ACCESS_METHODS_HOBT_VIRTUAL_ROOT 156,818
LOGMGRE_QJUELE 0.9%% - = = —

LOG_MANAGER 103,316
CHECKPOINT_QUEUE 0.5%
ASYMC_NETWORE_ICQ 0.8%%
WRITELOG 0.4%%

For more information about the sys.dm_os_wait_stats DMV see sys.dm_os_wait_stats (Transact-
SQL) (http://go.microsoft.com/fwlink/p/?LinkID=212508) in SQL Server help.

For more information about the sys.dm_os_latch_stats DMV see sys.dm_os_latch_stats
(Transact-SQL) (http://go.microsoft.com/fwlink/p/?LinkID=212510) in SQL Server help.

The following measures of latch wait time are indicators that excessive latch contention is
affecting application performance:

1. Average page latch wait time consistently increase with throughput - If average page
latch wait times consistently increase with throughput and in particular, if average buffer latch
wait times also increase above expected disk response times, you should examine current
waiting tasks using the sys.dm_os_waiting_tasks DMV. Averages can be misleading if
analyzed in isolation so it is important to look at the system live when possible to understand
workload characteristics. In particular check whether there are high waits on
PAGELATCH_EX and/or PAGELATCH_SH requests on any pages. Follow these steps to
diagnose increasing average page latch wait times with throughput:

o Use the sample scripts Query sys.dm_os_waiting_tasks Ordered by Session ID or
Calculate Waits Over a Time Period to look at current waiting tasks and measure
average latch wait time.

o Use the sample script Query Buffer Descriptors to Determine Objects Causing Latch
Contention to determine the index and underlying table on which the contention is
occurring.

e Measure average page latch wait time with the Performance Monitor counter
MSSQL%InstanceName%\Wait Statistics\Page Latch Waits\Average Wait Time or by
running the sys.dm_os_wait_stats DMV.

17

http://go.microsoft.com/fwlink/p/?LinkID=212508
http://go.microsoft.com/fwlink/p/?LinkID=212508
http://go.microsoft.com/fwlink/p/?LinkID=212510
http://go.microsoft.com/fwlink/p/?LinkID=212510

2.

To calculate the average wait time for a particular wait type (returned by

sys.dm_os_wait_stats as wait_type), divide total wait time (returned as

wait_time_ms) by the number of waiting tasks (returned as waiting_tasks_count).
Percentage of total wait time spent on latch wait types during peak load - If the average
latch wait time as a percentage of overall wait time increases in line with application load,
then latch contention may be affecting performance and should be investigated.
Measure page latch waits and non-page latch waits with the SQLServer:Wait Statistics
Object (http://go.microsoft.com/fwlink/p/?Linkld=223206) performance counters. Then
compare the values for these performance counters to performance counters associated with
CPU, 1/0, memory and network throughput, for example transactions/sec and batch
requests/sec are two good measures of resource utilization.

Relative wait time for each wait type is not included in the sys.dm_os_wait_stats
DMV because this DMW measures wait times since the last time that the instance of
SQL Server was started or the cumulative wait statistics were reset using DBCC
SQLPERF. To calculate the relative wait time for each wait type take a snapshot of
sys.dm_os_wait_stats before peak load, after peak load, and then calculate the
difference. The sample script Calculate Waits Over a Time Period can be used for
this purpose.

A Note

For a non-production environment only, clear the sys.dm_os_wait_stats DMV with
the following command:

dbcc SQLPERF ('sys.dm os wait stats', 'CLEAR')
A similar command can be run to clear the sys.dm_os_latch_stats DMV:
dbcc SQLPERF ('sys.dm os_ latch_stats', 'CLEAR')

Throughput does not increase, and in some case decreases, as application load
increases and the number of CPU’s available to SQL Server increases - This was
illustrated in Example of Latch Contention.

CPU Utilization does not increase as application workload increases - If the CPU
utilization on the system does not increase as concurrency driven by application throughput
increases, this is an indicator that SQL Server is waiting on something and symptomatic of
latch contention.

Note

Analyze Root Cause Even if each of the preceding conditions is true it is still possible
that the root cause of the performance issues lies elsewhere. In fact, in the majority of
cases sub-optimal CPU utilization is caused by other types of waits such as blocking on
locks, 1/O related waits or network related issues. As a rule of thumb it is always best to
resolve the resource wait that represents the greatest proportion of overall wait time
before proceeding with more in depth analysis.

18

http://go.microsoft.com/fwlink/p/?LinkId=223206
http://go.microsoft.com/fwlink/p/?LinkId=223206

Analyzing Current Wait Buffer Latches

Buffer latch contention manifests as an increase in wait times for latches with a wait_type of
either PAGELATCH_* or PAGEIOLATCH_* as displayed in the sys.dm_os_wait_stats DMV. To
look at the system in real-time run the following query on a system to join the
sys.dm_os_wait_stats, sys.dm_exec_sessions and sys.dm_exec_requests DMVs. The results
can be used to determine the current wait type for sessions executing on the server.

SELECT wt.session id, wt.wait type

, er.last wait type AS last wait type

, wt.wait duration ms

, wt.blocking session id, wt.

FROM sys.dm os waiting tasks
JOIN sys.dm exec sessions es
JOIN sys.dm exec requests er

WHERE es.is user process = 1

blocking exec context id, resource description

wt
ON wt.session_id

ON wt.session_id

AND wt.wait type <> 'SLEEP TASK'

ORDER BY wt.wait duration ms

desc

es.session_id

er.session_id

19

Wait type for executing sessions

- SQUQueryS.sql - (local)\...\..0))* | 5QLGueryZ.ad - (ocalll. L. 7D* | I
B SELECT wt.seasion_id, wt.wait_type
; ®r.last_wait_type AS last_waic_type |
, wt.wait duration ms
» wt.blocking_sesaion_id, wt.blocking_exec_context_id, resource_description |
FROM ays=.dm o= waiving tasks we |
JOIN ays.dm_sxec_scasiens es ON wi.scssion_id - e3.session_id
JOIN ays.dm exec requests er ON vt.=2ession id = er.=ession id |
WHERE &s.is user process 1
AHD we.walt_type <> 'ILEEP_TASE' |
L ORDER BY we.wait_ duration me dese
! |
1| |
2] Resuts I 3 Messages | |
session_id | wal_type [st wait_ype | wat_duwation_ms | blockig_session_id | blocking_ewsc,_conie_id | resouce_dssciplion [l
1 17] PAGELATCH_EX PAGELATCH_EX 27 HULL HULL 21:20054
2 | & FAGELATCH_EX PAGELATCH_EX 27 NULL HULL 8120054 |
3 |7 PAGELATCH EX PAGELATCH_EX 27 NULL HULL &1:20054
|4 | 2m PAGELATCH_EX PAGELATCH EX & MULL HULL 8120054 |
|5 | a7 PAGELATCH_EX PAGELATCH_EX 20 MULL HULL B1: 20054
|6 | &6 FAGELATCH_EX PAGELATCH_EX 20 HULL HULL B1: 20054 |
7 |5 PAGELATCH_SH PAGELATCH_SH 17 HULL HULL 81:20054 |
8 | N3 FAGELATCH_SH PAGELATCH_SH 17 HULL HULL 8:1:20054
9 | 148 PAGELATCH_ SH PAGELATCH_SH 17 HULL HULL B1:20054 |
“'I_l?__J a0 PAGELATCH_SH PAGELATCH_SH 17 RULL HULL B1:20054
| | er PAGELATCH SH PAGELATCH SH 17 HULL HULL 8120554 |
a2 | e2 PAGELATCH_SH PAGELATCH_SH 16 MULL HULL B1: 20054
|13 | 53 PAGELATCH_SH PAGELATCH_SH 16 MULL HULL 8120354 |
|14 | 23 PAGELATCH_SH PAGELATCH_SH 16 HULL HULL 8:1: 20054 |
5 | 175 PAGELATCH_SH PAGELATCH_SH 1B HULL HULL B1:20054
16 | 203 PAGELATCH SH PAGELATCH SH 1B HULL HULL &1:20054 |
ﬂ 19 PAGELATCH_ SH PAGELATCH_SH 16 HULL HULL 120054
a8 | 23 PAGELATCH SH PAGELATCH_SH 16 HULL HULL 81:20054 |
118 | 105 PAGELATCH_SH PAGELATCH_SH 16 MULL HULL B1:20054 |
20| 113 PAGELATCH_SH PAGELATCH_SH 16 MULL HULL B1: 20054
21] 1z PAGELATCH_SH PAGELATCH_SH 16 HULL HULL B1: 20054 |
22 | 156 PAGELATCH_SH PAGELATCH_SH 18 HULL HULL B:1: 20054
23 | 30 PAGELATCH_SH PAGELATCH_SH 18 HULL HULL 1:20054 |

The statistics exposed by this query are described as follows:

Statistic Description
Session_id ID of the session associated with the task.
Wait_type The type of wait that SQL Server has recorded

in the engine and which is preventing a current
request from being executed.

Last_wait_type

If this request has previously been blocked, this
column returns the type of the last wait. Is not
nullable.

Wait_duration_ms

The total wait time in milliseconds spent waiting

20

Statistic

Description

on this wait type since SQL Server instance
was started or since cumulative wait statistics
were reset.

Blocking_session_id

ID of the session that is blocking the request.

Blocking_exec_context_id

ID of the execution context associated with the
task.

Resource_description

The resource_description column lists the exact
page being waited for in the format:
<database_id>:<file_id>:<page_id>

The following query will return information for all non-buffer latches:

Query:

select * from sys.dm os latch stats where latch class <> 'BUFFER' order by wait time ms

desc

Output:

SQLQuery5.sql - (Iocal)\...\...l]))"‘}/ SQLQuery2.sql - (ocal)y, 4., 7]

4]

gelect ¥ from sys.dm o5 latch stats where latch class <> 'BEUFFER' order by wait_time _ms desc

[Results | 3 Messages

| waiting_requests_count | wait_time_msz | max_wait_time_mz

latch_clasz
1 || ACCESS_METHODS_HOBT_WIRTUAL_ROOT
2 | BUFFER_POOL_GROW
3 | FGCB_ADD_REMOVE
4 | FILEGROUP_MAMAGER
| 5 | FILE_MANAGER
(6 | FILESTREAM_FCB
7| FILESTREAM_FILE_MANAGER
(8 | FILESTREAM_GHOST_FILES
3 | FILESTREAM_DFS_ROOT
10 | LOG_MANAGER
11 | FULLTEXT_DOCUMENT_ID
LI FULLTEXT_DOCUMENT_ID_TRAMSACTION
13| FULLTEXT_DOCUMENT_ID_NOTIFY
(14 | FULLTEXT_LOGS
15 | FULLTEXT_CR&WL_LOG
16| FULLTEXT_ADMIN

| BBETE

10

|
|
|
|
|
|
|
|
B12774 £3
% 18
18 18 |
0 0 |
]] |
]]
]] |
0 0 |
0 0 |
0 0 |
]]
]] |
]] |
]] |
1] 1] |
]]

21

The statistics exposed by this query are described as follows:

Statistic Description

Latch_class The type of latch that SQL Server has recorded
in the engine and which is preventing a current
request from being executed.

Waiting_requests_count Number of waits on latches in this class since
SQL Server restarted. This counter is
incremented at the start of a latch wait.

Wait_time_ms The total wait time in milliseconds spent waiting
on this latch type.

Max_wait_time_ms Maximum time in milliseconds any request
spent waiting on this latch type.

The values returned by this DMV are cumulative since last time the server was restarted
or the DMV was reset. On a system that has been running a long time this means some
statistics such as Max_wait_time_ms are rarely useful. The following command can be
used to reset the wait statistics for this DMV:

DBCC SQLPERF ('sys.dm os latch stats', CLEAR)

SQL Server Latch Contention Scenarios

The following scenarios have been observed to cause excessive latch contention.

Last pagel/trailing page insert contention

A common OLTP practice is to create a clustered index on an identity or date column. This helps
maintain good physical organization of the index which can greatly benefit performance of both
reads and writes to the index. This schema design can inadvertently lead to latch contention
however. This issue is most commonly seen with a large table, with small rows; and inserts into
an index containing a sequentially increasing leading key column such as ascending integer or
datetime key. In this scenario the application rarely if ever performs updates or deletes, the
exception being for archiving operations.

In the example below, thread 1 and thread 2 both want to perform an insert of a record which will
be stored on page 299. From a logical locking perspective there is no problem as row level locks
will be used and exclusive locks on both records on the same page can be held at the same time.
However to ensure integrity of physical memory only one thread at a time can acquire an
exclusive latch so access to the page is serialized to prevent lost updates in memory. In the case
below thread 1 acquires the exclusive latch; and thread 2 waits, which registers a

22

PAGELATCH_EX wait for this resource in the wait statistics. This is displayed through the

wait_type value in the sys.dm_os_waiting_tasks

Exclusive Page Latch On Last Row

Page (BK)

ROW

PAGELATCH_EX
ROW

IX — Page 258
ROW

INSERT VALUES

ROW (298, »¥xxX...)

PAGELATCH_EX walt

PAGELATCH_EX

I¥X — Page 299

INSERT VALUES
{259, xxxx...])

This contention is commonly referred to as “Last
right-most edge of the B-tree as displayed in the

Last Page Insert Contention

DMV.

v

X

Page Insert” contention because it occurs on the
following diagram:

B-tree
Page l
h 4 Tree
B-tree B-tree | Pages
17 Page —l l’ Page —l
Leaf Data | Data | Data | Data Data | Data | Data | Data | Data Data Data Data Data
Pages | Page Page Page Page Page Page Page Page Page Page Page Page Page

Sequentually Increasing Logical Index Key

i

23

This type of latch contention can be explained as follows (from Resolving PAGELATCH
Contention on Highly Concurrent INSERT Workloads):

When a new row is inserted into an index, SQL Server will use the following algorithm to execute
the modification:

1. Traverse the B-tree to locate the correct page to hold the new record.

2. Latch the page with PAGELATCH_EX, preventing others from modifying it, and acquire
shared latches (PAGELATCH_SH) on all the non-leaf pages.

In some cases the SQL Engine requires EX latches to be acquired on non-leaf B-tree
pages as well. For example, when a page-split occurs any pages that will be directly
impacted need to be exclusively latched (PAGELATCH_EX).

3. Record a log entry that the row has been modified.

4. Add the row to the page and mark the page as dirty.

5. Unlatch all pages.

If the table index is based upon a sequentially increasing key, each new insert will go to the same
page at the end of the B-tree, until that page is full. Under high-concurrency scenarios this may
cause contention on the right most edge of the B-tree and can occur on clustered and non-
clustered indexes. Tables that are affected by this type of contention generally primarily accept
INSERTS, and pages for the problematic indexes are normally relatively dense, for example a row
size ~165 bytes (including row overhead) equals ~49 rows per page. In this insert heavy example
it is expected that PAGELATCH_EX/PAGELATCH_SH waits will occur and this is the typical
observation. To examine Page Latch waits vs. Tree Page Latch waits use the
sys.dm_db_index_operational_stats DMV.

The following table summarizes the major factors observed with this type of latch contention:

Factor Typical Observations

Logical CPU’s in use by SQL Server This type of latch contention occurs mainly on
16+ CPU core systems and most commonly on
32+ CPU core systems.

Schema design and access patterns e Uses a sequentially increasing identity
value as a leading column in an index on a
table for transactional data.

e The index has an increasing primary key
with a high rate of inserts.

e The index has at least one sequentially
increasing column value.

e Typically small row size with many rows per
page.

Wait type observed. Many threads contending for same resource
with exclusive (EX) or shared (SH) latch waits

24

http://go.microsoft.com/fwlink/p/?LinkId=215148
http://go.microsoft.com/fwlink/p/?LinkId=215148

Factor

Typical Observations

associated with the same resource_description

in the sys.dm_os_waiting_tasks DMV as
returned by the Query
sys.dm_os_waiting_tasks Ordered by Wait
Duration query.

Design factors to consider.

e Consider changing the order of the index

columns as described in the Non-sequential

index mitigation strateqy if you can
guarantee that inserts will be distributed

across the B-tree uniformly all of the time.

e |[f the Hash partition mitigation strategy is
used it removes the ability to use

partitioning for any other purposes such as

sliding window archiving.

e Use of the Hash partition mitigation strategy

can lead to partition elimination problems

for SELECT queries used by the
application.

Latch contention on small tables with a non-clustered index and

random inserts (queue table)

This scenario is typically seen when an SQL table is used as a temporary queue, for example in

an asynchronous messaging system.

In this scenario exclusive (EX) and shared (SH) latch contention can occur under the following

conditions:

1. Insert, select, update or delete operations occur under high concurrency.

2. Row size is relatively small (leading to dense pages).
3. The number of rows in the table is relatively small; leading to a shallow B-tree, defined by

having an index depth of 2 or 3.

Even B-trees with a greater depth than this can experience contention with this type
of access pattern, if the frequency of data manipulation language (DML) and
concurrency of the system is high enough. The level of latch contention may become
pronounced as concurrency increases when 16 or more CPU cores are available to

the system.

Latch contention can occur even if access is random across the B-tree such as when a non-
sequential column is the leading key in a clustered index. The screenshot below is from a system
experiencing this type of latch contention. In this example, contention is due to the density of the

25

pages caused by small row size and a relatively shallow B-tree. As concurrency increases, latch
contention on pages occurs even though inserts are random across the B-tree since a GUID was
the leading column in the index.

L"% Note

In the screenshot below the waits occur on both buffer data pages and pages free space

(PFS) pages. See Benchmarking: Multiple data files on SSDs

(http://go.microsoft.com/fwlink/p/?Linkld=223210) for more information about PFS page
latch contention. Even when the number of data files was increased, latch contention was
prevalent on buffer data pages.

F. Murouolt SO0 Server Hanagement Sludsa

Fle Edt Vew Query Proect Debu
D Newauery |y | B D5 DS Wy

'jr]'_‘j BT akMsgBontt

FROM

¢ BL.
g WEL
« WL

’unwmtw{m}ri it
1 SELECT wt.session_id, wo.wait_type

Tooks Window Community kel

= ¥ Exeaste b l-/...r“.;_"i G.QZE :lm@ﬁ
" FndWstResow. . statr (WT)) | Modfied Lates.. ristrater (58)) | SCLQueryLsd |

last _wait t-]n‘ﬂ.- AS last _waie_type

walt duration ms

blocking_session_id, wt.blocking exec context_id.

ays.dm os waiting_tasks wt

LEEF_TASK®

H oayas.ds exes sesaichs €3 ONH wt.aeaaion_id -
5.dm_exes_requests &r ON wt.session_id
WHERE &= is_user process = 1
AND WC.wWalt_type <> °5
==URDER BT :l.'!!:l.c!'._il:l
-order by walt_duration_ms deac

&8 . seaaien id
L4 1 l‘ﬁibﬁ_iﬂ

respurce _descripticn

li.!:fnr'l'q

sosmon i | wat byoo | lot_wd_type Iﬂ.ﬁmplﬂnﬁm—mﬁlmw_-n.m—.ﬂlmﬂ

i |n | WAITFOR WAITFOR M HULL NULL

] PAGELATCH_EX ~ PAGELATCH_EX 20 HULL NULL snm
e PAGELATCH_EX PAGELATCH EX 16 HULL NURLL AR]
4| e PAGELATCH_EX = PAGELATCH_EX 16 KULL NULL B1176757
5 1w PAGELATCH_EX PAGELATCH EX 15 HULL NULL LAREE]
& | 1 PAGELATCH_EX ~ PAGELATCH_EX 13 HULL NULL £1:176820
B PAGELATCH_SH = PAGELATCH SH 12 HULL NULL £1:806
8 |» PAGELATCH_EX = PAGELATCH EX 12 HULL NULL 1176820
1w PAGELATCH_UP PAGELATCH UP 10 HULL NULL B 1165048
8 | = PAGELATCH_UP PAGELATCH UP & HULL NUALL &1:258816
N E PAGELATCH_EX ~ PAGELATCH_EX & HULL NULL £1.258816
L e PAGELATCH_UP PAGELATCH LR 7 HULL ML 81258816
ENE] PAGELATCH_UP ~ PAGELATCH_UF 7 KULL NULL £:1:169848
M| e PAGELATCH_UP PAGELATCH UP & HULL NULL 81065048
(157 215 PAGELATCH_SH PAGELATCH SH 5 HULL NULL £197
16 | =2 PAGELATCH_UP PAGELATCH UP 4 HULL NULL B 1258016

26

http://go.microsoft.com/fwlink/p/?LinkId=223210

The following table summarizes the major factors observed with this type of latch contention;

Factor Typical Observations

Logical CPUs in use by SQL Server Latch contention occurs mainly on computers
with 16+ CPU cores.

Schema Design and Access Patterns e High rate of insert/select/update/delete
access patterns against very small tables.

e Shallow B-tree (index depth of 2 or 3).
e Small row size (many records per page).

Level of concurrency Latch contention will occur only under high levels
of concurrent requests from the application tier.

Wait type observed Observe waits on buffer (PAGELATCH_EX and
PAGELATCH_SH) and non-buffer latch
ACCESS_METHODS_HOBT_VIRTUAL_ROOT
due to root splits.Also PAGELATCH_UP waits on
PFS pages. For more information about non-
buffer latch waits see sys.dm_os_latch stats
(Transact-SQL)
(http://go.microsoft.com/fwlink/p/?Linkld=223211)
in SQL Server help.

The combination of a shallow B-Tree and random inserts across the index is prone to causing
page splits in the B-tree. In order to perform a page split, SQL Server must acquire shared (SH)
latches at all levels, and then acquire exclusive (EX) latches on pages in the B-tree that are
involved in the page splits. Also when concurrency is very high and data is continually inserted
and deleted, B-tree root splits may occur. In this case other inserts may have to wait for any non-
buffer latches acquired on the B-tree. This will be manifested as a large number of waits on the
ACCESS_METHODS_HBOT_VIRTUAL_ROQOT latch type observed in the
sys.dm_os_latch_stats DMV.

The following script can be modified to determine the depth of the B-tree for the indexes on the
affected table.

select o.name as [table],
i.name as [index],
indexProperty (object id(o.name), i.name, 'indexDepth')

+ indexProperty(object id(o.name), i.name, 'isClustered') as depth, --clustered index

depth reported doesn't count leaf level
i.[rows] as [rows],

i.origFillFactor as [fillFactor],

27

http://go.microsoft.com/fwlink/p/?LinkId=223211
http://go.microsoft.com/fwlink/p/?LinkId=223211

case (indexProperty(object id(o.name), i.name, 'isClustered'))
when 1 then 'clustered'
when O then 'nonclustered'
else 'statistic'
end as type
from sysIndexes i

join sysObjects o on o.id = i.id

where o.type = 'u

and indexProperty(object id(o.name), i.name, 'isHypothetical') = 0 --filter out

hypothetical indexes

and indexProperty (object id(o.name), i.name, 'isStatistics') = 0 --filter out

statistics

order by o.name

Latch contention on page free space (PFS) pages

PFS stands for Page Free Space, SQL Server allocates one PFS page per each 8088 pages
(starting with PagelD = 1) in each database file. Each byte in the PFS page records information
including how much free space is on the page, if it is allocated or not and whether the page stores
ghost records. The PFS page contains information about the pages available for allocation when
a new page is required by an insert or update operation. The PFS page must be updated in a
number of scenarios, including when any allocations or de-allocations occur. Since the use of an
update (UP) latch is required to protect the PFS page, latch contention on PFS pages can occur if
you have relatively few data files in a filegroup and a large number of CPU cores. A simple way to
resolve this is to increase the number of files per filegroup.

0 Caution
Increasing the number of files per filegroup may adversely affect performance of certain
loads, such as loads with many large sort operations which spill memory to disk.

If many PAGELATCH_UP waits are observed for PFS or SGAM pages in tempdb complete these

steps to eliminate this bottleneck:

1. Add data files to tempdb so that the number of tempdb data files is equal to the number of
processor cores in your server.

2. Enable SQL Server Trace Flag 1118.

For more information about allocation bottlenecks caused by contention on system pages, see

the blog post What is allocation bottleneck? (http://go.microsoft.com/fwlink/p/?Linkld=219395).

Table-valued functions and latch contention on tempdb

There are other factors beyond allocation contention that can cause latch contention on tempdb,
such as heavy TVF use within queries. For information about how to identify and resolve

28

http://go.microsoft.com/fwlink/p/?LinkId=219395

contention related to heavy TVF usage within queries see Table-Valued Functions and tempdb
Contention (http://go.microsoft.com/fwlink/p/?Linkld=214993).

Handling Latch Contention for Different Table
Patterns

This section describes techniques that can be used to address or workaround performance
issues related to excessive latch contention.

Use a Non Sequential Leading Index Key

One method for handling latch contention is to replace a sequential index key with a non-
sequential key to evenly distribute inserts across an index range.

Typically this is done by having a leading column in the index that will distribute the workload
proportionally. There are a couple of options here:

Option 1 — Use a column within the table to distribute values
across the index key range

Evaluate your workload for a natural value that can be used to distribute inserts across the key
range, for example in an ATM banking scenario ATM_ID may be a good candidate to distribute
inserts into a transaction table for withdrawals since one customer can only use one ATM at a
time. Similarly in a point of sales system, perhaps Checkout_ID or a Store ID would be a natural
value that could be used to distribute inserts across a key range.This technique requires creating
a composite index key with the leading key column being either the value of the column identified
or some hash of that value combined with one or more additional columns to provide unigqueness.
In most cases a hash of the value will work best because too many distinct values will result in
poor physical organization.For example, in a point of sales system, a hash can be created from
the Store ID that is some modulo which aligns with the number of CPU cores. This technique
would result in a relatively small number of ranges within the table however it would be enough to
distribute inserts in such a way to avoid latch contention. The image below illustrates this
technique.

29

http://go.microsoft.com/fwlink/p/?LinkId=214993
http://go.microsoft.com/fwlink/p/?LinkId=214993

Inserts after applying non-sequential index
Using non-sequential index

B-tree
Page
Tree
B-tree B-tree = Pages
Page Page
Leaf Data Data Data Data Data
FPages Page Page FPage Page Page
—
1001 2001 ioni 4001 5001 G001
1000 2000 3000 4000 5000 [li]] FOO00

Logical Key Order of Index — non-sequential

Ot @t Ot

INSERT INSERT

| |
t t

INSERT

|
T

@1

INSERT

|
f

Many threads inserting across entire range

@ Important

This pattern contradicts traditional indexing best practices. While this technique will help
ensure uniform distribution of inserts across the B-tree, it may also necessitate a schema
change at the application level. In addition, this pattern may negatively impact
performance of queries which require range scans that utilize the clustered index. Some
analysis of the workload patterns will be required to determine if this design approach will
work well. This pattern should be implemented if you are able to sacrifice some
sequential scan performance to gain insert throughput and scale.

This pattern was implemented during a performance lab engagement and resolved latch
contention on a system with 32 physical CPU cores. The table was used to store the closing

balance at the end of a transaction; each business transaction performed a single insert into the

table.

30

Original Table Definition

When using the original table definition listed below, excessive latch contention was observed to
occur on the clustered index pk_tablel:

create table tablel

(

TransactionID bigint not null,
UserID int not null,
SomeInt int not null

alter table tablel
add constraint pk_tablel

primary key clustered (TransactionID, UserID)

The object names in the table definition have been changed from their original values.
Re-ordered Index Definition

Re-ordering the index with UserID as the leading column in the primary key provided an almost
completely random distribution of inserts across the pages. The resulting distribution was not
100% random since not all users are online at the same time, but the distribution was random
enough to alleviate excessive latch contention. One caveat of reordering the index definition is
that any select queries against this table must be modified to use both UserID and TransactionID
as equality predicates.

@ Important
Ensure that you thoroughly test any changes in a test environment before running in a
production environment.

31

create table tablel

(

TransactionID bigint not null,
UserID int not null,
SomeInt int not null

go

alter table tablel
add constraint pk_tablel
primary key clustered (UserID, TransactionID)
go
Using a hash value as the leading column in primary key

The following table definition can be used to generate a modulo which aligns to the number of
CPUs, HashValue is generated using the sequentially increasing value TransactionlD to ensure a
uniform distribution across the B-Tree:

create table tablel

(

TransactionID bigint not null,
UserID int not null,
SomelInt int not null

)
go
-- Consider using bulk loading techniques to speed it up
ALTER TABLE tablel
ADD [HashValue] AS (CONVERT ([tinyint], abs([TransactionID])%(32))) PERSISTED NOT NULL
alter table tablel
add constraint pk tablel

primary key clustered (HashValue, TransactionID, UserID)

Option 2 — Use a GUID as the Leading Key Column of the Index

If there is no natural separator then a GUID column can be used as a leading key column of the
index to ensure uniform distribution of inserts. While using the GUID as the leading column in the
index key approach enables use of partitioning for other features, this technique can also

32

introduce potential downsides of more page-splits, poor physical organization and low page
densities.

The use of GUIDs as leading key columns of indexes is a highly debated subject. An in-
depth discussion of the pros and cons of this method falls outside the scope of this paper.

Use Hash Partitioning with a Computed Column

Table partitioning within SQL Server can be used to mitigate excessive latch contention. Creating
a hash partitioning scheme with a computed column on a partitioned table is a common approach
which can be accomplished with these steps:

1. Create a new filegroup or use an existing filegroup to hold the partitions.

2. If using a new filegroup, equally balance individual files over the LUN, taking care to use an
optimal layout. If the access pattern involves a high rate of inserts make sure to create the
same number of files as there are physical CPU cores on the SQL Server computer.

3. Use the CREATE PARTITION FUNCTION command to partition the tables into X partitions,
where X is the number of physical CPU cores on the SQL Server computer. (at least up to 32
partitions)

A 1.1 alignment of the number of partitions to the number of CPU cores is not always
necessary. In many cases this can be some value less than the number of CPU
cores. Having more partitions can result in more overhead for queries which have to
search all partitions and in these cases fewer partitions will help. In SQLCAT testing
on 64 and 128 logical CPU systems with real customer workloads 32 partitions has
been sufficient to resolve excessive latch contention and reach scale targets.
Ultimately the ideal number of partitions should be determined through testing.

4. Use the CREATE PARTITION SCHEME command:
e Bind the partition function to the filegroups.
e Add a hash column of type tinyint or smallint to the table.

e Calculate a good hash distribution, for example use hashbytes with modulo or
binary_checksum.

The following sample script can be customized for purposes of your implementation:

--Create the partition scheme and function, align this to the number of CPU cores 1:1 up

to 32 core computer
-- so for below this is aligned to 16 core system
CREATE PARTITION FUNCTION [pf hashl16] (tinyint) AS RANGE LEFT FOR VALUES

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

CREATE PARTITION SCHEME [ps_hashl6] AS PARTITION [pf hashlé] ALL TO ([ALL_DATA])

33

-- Add the computed column to the existing table (this is an OFFLINE operation)

-- Consider using bulk loading techniques to speed it up
ALTER TABLE [dbo].[latch contention table]

ADD [HashValue] AS (CONVERT ([tinyint], abs(binary checksum([hash col]l)%(16)), (0)))

PERSISTED NOT NULL

--Create the index on the new partitioning scheme

CREATE UNIQUE CLUSTERED INDEX [IX Transaction ID]

ON [dbo].[latch contention table] ([T_ID] ASC, [HashValue])
ON ps_hashl6 (HashValue)

This script can be used to hash partition a table which is experiencing problems caused by Last
page/trailing page insert contention. This technique moves contention from the last page by
partitioning the table and distributing inserts across table partitions with a hash value modulus
operation.

What hash partitioning with a computed column does

As the diagram below illustrates, this technique moves the contention from the last page by
rebuilding the index on the hash function and creating the same number of partitions as there are
physical CPU cores on the SQL Server computer. The inserts are still going into the end of the
logical range (a sequentially increasing value) but the hash value modulus operation ensures that
the inserts are split across the different B-trees, which alleviates the bottleneck. This is illustrated
in the diagrams below:

Page latch contention from last page insert
Before

\REE.

A2 2R T

1l

Threads inserting inte end of
range — cantention on "last page”

34

Page latch contention resolved with partitioning

After
Hash Partitioned Table / Index
\REE \REE \REE
L JE 2R ZaE | L JE 2R ZaE | A 2k 2 B

[
Threads inserting into end of

range but across each partition

Trade-offs when using hash partitioning

While hash partitioning can eliminate contention on inserts, there are several trade-offs to
consider when deciding whether or not to use this technique:

e Select queries will in most cases need to be modified to include the hash partition in the
predicate and lead to a query plan that provides no partition elimination when these queries
are issued. The screenshot below shows a bad plan with no partition elimination after hash
partitioning has been implemented.

35

Query plan without partition elimination

| 5QUGuery26.sql...rator (101))* *'SOLQuery34.sql_istrator (65))* | 5QLQuery36.sq.. iswator (51)* |
BuidhippInastancelIDl unigqueidentifier,
fuidProcessID un iqueidentifiar,
f@ScacicHashValue cinyint

L1
1

set BdtNow -=we stored everything in local for service windowa
sar @deUTCMaw TCDa
set QuidProsessID = Hewll Clustered Index Seek [Clustered)
Scanning & particular range of rows from a dustered index
set B5taticHashValue OMVERT (tinyvintk,
Physical Operation Clusbered Index Seek
SELECT TOF 20 w.uidWorkID, w.uidInscanc '-N“Iml’“—‘:;'*’n'; Clusterad Index Sask
FROM dbo. [BBW SendHostQ] AS w WITH (gpr ActuslMumberof Rows L
-—INWER LOOP JOIN dbo.Instances AS i WI Estimated 170 Cost 0.05
S T, Estimated CPU Cost 0.0025131
LOOP I[N dba.Inscances AS i WITE Number of Executions 1
WHERE Estimated Number of Executions i
Estimated Operator Cost 00525131 [45%)
Estimated Subtree Cost 0,0525131
——This determines if we alresdy dec Estimated Humber of Rows .
N . . Estimated Row Size 152B
1| [Actual Rebinds o
- : o Actual Rewinids 0
] Resuts | 'y Messages 2" Execution pian | Partitioned True
Query 1: Query cost (relatiwe to the batch): Actual Partition Count]
SELECT TOF 20 w.uidWorkID, w.uidInstanceID, i Qrdered True
Node 1D El
iE L
. 4 jf Object
1acad Locpa T T * 1 1 "
e . Bore Filtez [BizTalkMsgBouDb]lldbol[BEW_SendHostQl
L ner Falm] Cosz: 10 % Case: 0 [DO_BBW_SendHost]] [w]
Cosr: O &% - =
Warnings

Sesk Keys[1]: Start: Ptnld1000 »= Scalar Operator((1)), End:
Ptnld 1000 <= Scalar Operator({15)), Seek Keys[2]: Prefix:

Cluscarsd In

{Instances] .
= =g V_=en ,
:il — [BizTalkM=gBoxDb].[dba].[BEBW SendHost()]f0rderedDaivery
| & Query executed successfully. = Scalar Operator{[@uidClassID]), Scalar Qperator{(0))

¢ It eliminates the possibility of partition elimination on certain other queries, such as range-
based reports.

¢ When joining a hash partitioned table to another table, to achieve partition elimination the
second table will need to be hash partitioned on the same key and the hash key should be
part of the join criteria.

e Hash partitioning prevents the use of partitioning for other management features such as
sliding window archiving and partition switch functionality.

Hash partitioning is an effective strategy for mitigating excessive latch contention as it does

increase overall system throughput by alleviating contention on inserts. Because there are some

trade-offs involved, it may not be the optimal solution for some access patterns.

36

Summary of Techniques Used to Address Latch

Contention

The following table provides a summary of the techniques that can be used to address excessive

latch contention:

Technique

Pros and Cons

Non-sequential key/index

Advantages

Allows the use of other partitioning
features, such as archiving data using a
sliding window scheme and partition switch
functionality.

Disadvantages

Possible challenges when choosing a
key/index to ensure ‘close enough to’
uniform distribution of inserts all of the time.

GUID as a leading column can be used to
guarantee uniform distribution with the
caveat that it can result in excessive page-
split operations.

Random inserts across B-Tree can result in
too many page-split operations and lead to
latch contention on non-leaf pages.

Hash partitioning with computed column

Advantages

Transparent for inserts.

Disadvantages

Partitioning cannot be used for intended
management features such as archiving
data using partition switch options.

Can cause partition elimination issues for
queries including individual and range
based select/update, and queries that
perform a join.

Adding a persisted computed column is an
offline operation.

37

Walkthrough: Diagnosing a SQL Server
Latch Contention Scenario

The following is a walkthrough of how to use the tools and techniques described in Diagnosing
SOQL Server Latch Contention and Handling Latch Contention for Different Table Patterns to
resolve a problem in a real world scenario. This scenario describes a customer engagement to
perform load testing of a point of sales system which simulated approximately 8,000 stores
performing transactions against a SQL Server application which was running on an 8 socket, 32
physical core system with 256 GB of memory.

The following diagram details the hardware used to test the point of sales system:

Point of Sales System Test Environment
BL460 Blade Servers

Dell RS00%, RBO3'S

ﬁ !{r
‘ . ’ Network switch

Active/Active Failover cluster

'/-1x Transaction DB Server 1x Reporting DB Server B
I P ; 8 socket (quad core), 4 socket (dual core),
% 2.3 GHz, 256 GB RAM 2.6 GHz, 32 GB RAM
ﬁr (r Switch ’ Q @
12% Load drivers: . DL785 DL585
2 socket (quad core),
Bd-bit, 32 GB memory San SAN switch

Brocade 4900
(32-ports active)

. SAN:
] cx-960
= (240 drives,

15K, 300GB)

Sx App servers: Switch
2 socket (quad core),
32-bit, 32 GB memaory

38

Symptom: Hot Latches

In this case we observed very high waits for PAGELATCH_EX where we typically define high as
an average of more than 1 ms. In this case we consistently observed waits exceeding 20 ms.

SQUOuery6.sal-(ocal,.|..)J* ' SQLQueryS.sql - lacal)\.—\~.0))* | SQLQueryZ.sal - focall...L.. D" | |
] SELECT wt.=es=ion id, vt.wait_type |
. er.last_wait_type AS last_wait_type
¢« WE.wait_duration_ms |
, wt.blocking session_id, wt.blocking exec context_id, resource description
FROM ays.dm os_waiting tasks 'Iltl |
JOIN ays.dm_exec_sessions es ON vt.zession_id = es.sesaion_id
OIN sys.dm_exec_requests er ON ut.ses:;un::d :r.::ssmn:ld |
VHERE e&=. !.s user process 1
AND we.walc type <> "3ILEEF_TASK® |
~ORDER BY wt.walt duration_mes desc |
i |
3 Resuls | 3 Messages| |
sessior_id_ | wai_lype lhﬂ-wi-Llu_lMLm_l coekent_id | resou |
WL e PAGELATCH_E¥ PAGELATCH_EX MNULL 81:111305
2] = FAGELATCH_EX PAGELATCH_EX 24 MNULL MNULL 811305 |
3 | 158 FAGELATCH_EX PAGELATCH_E< 23 MNULL MNULL B1111305
4 | 198 PAGELATCH_EX PAGELATCH_EX 22 MNULL HNULL 81:111305 |
& | ns PAGELATCH_EX PAGELATCH_EX 22 MNUILL MULL B1INAS |
E_ mz FAGELATCH_EX PAGELATCH_EX 16 NULL NULL B111305
7135 PAGELATCH_SH PAGELATCH_SH 13 MNULL MNULL 81111305 |
|8 | = PAGELATCH_SH PAGELATCH_SH 13 MNULL MNULL 81111305
1= PAGELATCH_SH PAGELATCH_SH 13 MNULL MNULL 811135 |
10| z0 FPAGELATCH_E PAGELATCH_EX 13 MNULL MNULL B1:111423 |
1| s PAGELATCH_SH PAGELATCH_SH 13 NULL NULL B1:111305
12 | =0 PAGELATCH_SH PAGELATCH_SH 13 HULL HULL B1I113S |
.-E.-.- 423 PAGELATCH_SH PAGELATCH_SH 13 NULL MNULL B35
|14 | 166 PAGELATCH_SH PAGELATCH_SH 13 MNULL MNULL 81111305 |
|15 | =9 PAGELATCH_SH PAGELATCH_SH 13 MNULL MNULL 81111305
16 | 340 PAGELATCH_SH PAGELATCH_SH 13 NULL NULL 81111305 |
L 160 PAGELATCH_SH PAGELATCH_SH 13 MNULL MNULL 81111305 |
|18 | 156 FAGELATCH_EX PAGELATCH_E- 13 NULL MNULL B1:111423
|13 | x& PAGELATCH_EX PAGELATCH_EX 13 NULL NULL 81:111423 |
20 | 153 PAGELATCH_EX FAGELATCH EX 13 MNUILL MULL B1111423
21_ x1 PAGELATCH_EX PAGELATCH_E< 13 MNULL MNULL 81111423 |
22 | =4 PAGELATCH_EX PAGELATCH_EX 13 NULL MNULL B1:111423 |
23 | = PAGELATCH_SH PAGELATCH_SH 13 MULL MNULL B1111305
24 | 62 PAGELATCH_SH PAGELATCH_SH 13 MNULL MNULL B1INHS |
25 | HE FAGELATCH_SH PAGELATCH_SH 12 NULL MNULL B1:111305 N

Once we determined that latch contention was problematic, we then set out to determine what
was causing the latch contention.

Isolating the Object Causing Latch Contention

The script below uses the resource_description column to isolate which index was causing the
PAGELATCH_EX contention:

39

The resource_description column returned by this script provides the resource
description in the format <DatabaselD,FilelD,PagelD> where the name of the database
associated with DatabaselD can be determined by passing the value of DatabaselD to
the DB_NAME () function.

SELECT wt.session id, wt.wait type, wt.wait duration ms

;, S.name AS schema name

, o.name AS object name

, i.name AS index name

FROM sys.dm os buffer descriptors bd

JOIN (
SELECT *
--resource description
, CHARINDEX(':', resource description) AS file index
, CHARINDEX(':', resource description, CHARINDEX(':',6 resource description)+l) AS

page index

’

resource description AS rd

FROM sys.dm os waiting tasks wt

WHERE wait type LIKE 'PAGELATCH%'

) AS wt

ON bd.database id = SUBSTRING(wt.rd, 0, wt.file index)

AND bd.file id = SUBSTRING (wt.rd, wt.file index+l, 1) --wt.page_ index)

AND bd.page_id = SUBSTRING (wt.rd, wt.page index+l, LEN(wt.rd))

JOIN

JOIN

JOIN

JOIN

JOIN

orde

sys.

sys
sys
sys
sys

r by

allocation units au ON bd.allocation unit id = au.allocation unit id

.partitions p ON au.container id = p.partition_id
.indexes i ON p.index id = i.index_ id AND p.object id = i.object id
.objects o ON i.object id = o.object id

.schemas s ON o.schema id = s.schema id

wt.wait duration ms desc

As shown below, we can see that the contention is on the table LATCHTEST and index name
CIX_LATCHTEST. Note names have been changed to anonymize the workload.

40

SOLQuery6.sql - (locall—\.J)* | S000ueryS.sq - flocal...|. 00" | SOLQuery.sl - docalll.. 1.7 |
IBELECT we.semmion_id, wt.wmlt_type, we.walt_duration_ms
» B.mebme LS schema namee
; O.mbme LS chject nasme
. l.mbme LS index nese
FROM =ys.dw_os_buffer descriptors bd
SELECT =
==ges
“HART L :esnurce_d.t:c::.pc ion] A3 !:l.le-_'nm!e::
, CHART 1", respurce_description, CHARINDEX|':', resource_description)+1] kS page_index
. l:em:-url:e_d.:ﬂc:iptlﬂn &S rd
FRON #y&.dm o3 waiting tasks we

"PAGELATCER" |

dEscEipE Lon

VHERE WmiT_TYpE L IFE
AT we
Of bd. database_id SUm MGiwt.rd, 0O, wt.file index
AND bd.rils id SOESTRING(we.pd, we.file index+l, 1) --wE.page_index)
bd. page 1d = SUESTRING (we.Ed, we.page imdex+l, LEM(we, ed)

r2.mllocation umits au ON bd.allocation_unic_id = auw.allocation unit_id
sys.partitions p 0N au.contaimer_id = p.particion_id

ays.indexes 1 OH p :|.I1d.|=:u_1d i. :|.|1d.|=:u_1d AHE p.object id i.0bject id
2. cbjecta o O i.cbject id @.oRject 14

JIOIN ags.achemas 3 ON 0. .—l"l.-un_ id 3.achami 1d

~order by wo.walt_duration_ma desc

1]
0 Renis |y Messages |
<)

I
1 g PAGELATCH_EX e LATCHTEST (D LATCHTEST |
|2 | s PAGELATCH EX 22 e LATCHTEST CD LATCHTEST
2| 3 PAGELATCH Ex 22 L] LATCHTEST (D LATCHTEST |
|4 | 1w PAGELATCH BX 22 b LATCHTEST CE< LATCHTEST
|5 | = PAGELATCH EX 20 @ LATCHTEST CD{_LATCHTEST |
& | %3 PAGELATCH EX 18 @ LATCHTEST CEX_LATCHTEST
e PAGELATCH_SH 13 e LATCHTEST CE{_LATCHTEST |
|8 | 2:0 PAGELATCH_SH 13 da LATCHTEST CE{_LATCHTEST
|8 | us PAGELATCH_SH 13 dha LATCHTEST CE{_LATCHTEST |
|10 | 185 PAGELATCH_SH 13 dbo LATCHTEST CE{_LATCHTEST
|11 | 1 PAGELATCH_SH 13 dho LATCHTEST = CE{_LATCHTEST |
32 | = PAGELATCH_ EX 13 dbo LATCHTEST = CE{_LATCHTEST
13 | 2w PAGELATCH EX 13 dho LATCHTEST CE{_LATCHTEST |
|14 | =4 PAGELATCH EX 12 dbo LATCHTEST CE{_LATCHTEST
15 | 213 PAGELATCH B¢ 12 dho LATCHTEST CE_LATCHTEST |
g | 173 PAGELATCH EX 12 dho LATCHTEST CE{_LATCHTEST
ar | @ PAGELATCH B 12 dbo LATCHTEST CE{_LATCHTEST |
18 | 123 PAGELATCH B¢ 12 dho LATCHTEST CE_LATCHTEST

For a more advanced script which polls repeatedly and uses a temporary table to determine the
total waiting time over a configurable period see Query Buffer Descriptors to Determine Objects
Causing Latch Contention in the Appendix.

Alternative Technique to Isolate the Object Causing Latch
Contention

Sometimes it can be impractical to query sys.dm_os_buffer_descriptors. As the memory in the
system, and available to the buffer pool increases so does the time required to run this DMV. On
a 256 GB system it may take up to 10 minutes or more for this DMV to run. An alternative

41

technique is available and is broadly outlined as follows and is illustrated with a different workload
which we ran in the lab:

1.

Query current waiting tasks, using the Appendix script Query sys.dm_os_waiting_tasks
Ordered by Wait Duration.

Identify the key page where a convoy is observed, which happens when multiple threads are
contending on the same page. In this example the threads performing the insert are
contending on the trailing page in the B-tree and will wait until they can acquire an EX latch.
This is indicated by the resource_description in the first query, in our case 8:1:111305.
Enable trace flag 3604 which exposes further information about the page via DBCC PAGE

with the following syntax, substitute the value you obtained via the resource_description for
the value in parentheses:

--enable trace flag 3604 to enable console output

dbcc traceon (3604)

--examine the details of the page
dbcc page (8,1, 111305, -1)

Examine the DBCC output. There should be an associated Metadata ObjectID, in our case
78623323".

42

SOLQuerye.sql - (ocall.. 4.7 | S0LGueryS.sql - (ocalil...\..00F* ' SQLQueryZ.sql - (local)...\.. 7))*

--enable trace flag 3604 to enable console oucput
Edbec traceon (3604)

-—examine the decails of the page
-dbhee page (8,1, 111305, -1)

1|

i

_3 Messages |

DECC execution completed, If DBCC printed error messages, contact your system administrator.
PAGE: (1:11130E5})

BUFFER:

BUF @0x00000000CCFD34 EE‘

bpage = 0x00000000CCEEC000 bhash = 0=20000000000000000 bpageno = (L1:111305)
bdbid = 8 breferences = 0 beputicks = 0
bsampleCount = 0 bUsal = 3816 bstat = 0xc0000b
blog = Dx3Zlbb brext = 0x0000000000000000

PAGE HEADER:

Fage 20x00000000CCE2CO00

I_Pl.gl'ld ® [(1:111308) -._hlll.d.tz"ul'lrs:i.un - 1 n_type = Z2

= typaFlagBics = Ox0 m_lavel = 1 = flagBics = Ox0
m_objld (AllocUnitId.id0bj) = Z19 m_indexId (AlleocUnitId.idInd) = Z56&

Hatadata: AllocUnicId = TFZ0OS7534052280320

Hetadara: Parcitienld = 72057594050904064 Hetadara: IndexId = 1
Metadata: ObjectId = 78823322 I.HPII'U"FII]'I = (L:1109%97) l‘_mxti'..g‘ = (1:111513)
painlen = 15 m_slotCht = 163 m_frealnc = 4381
l_ll."l'l'nlt-l = 7469 l_z.strvld.[!nt = 0 :l_lsn = (49:ZE46BZ:97)
& xactReserved = 0 m_xdesId = (0:0) & _ghostReclnt = 0

h_f-ﬂ!nﬂi!-!- =0
Allocacion STatus
GANM (1:Z) = ALLOCATED SGAM (1:3) = NOT ALLOCATED

PFE (1:10Eld4) = Ox40 ALLOCATED 0_PCT_FULL DIFF (l:&) = CHANGED
ML (1:7) = NOT MIN_ LOGCGED

DBCC execution completed. If DBCC printed error mesfages, CONTACT your =ysteén administrator.

5. We can now run the following command to determine the name of the object causing the
contention, which as expected is LATCHTEST.

@ Note
Ensure you are in the correct database context otherwise the query will return NULL.
--get object name

select OBJECT NAME (78623323)

43

—-—get object name
select OBJECT NAME (78623323)

Jdl

1 Results | FE Messagesl

[Ma column name]
1 | LATCHTEST

For more information about using DBCC PAGE, see the blog entry How to Use DBCC PAGE
(http://go.microsoft.com/fwlink/p/?Linkld=223212).

Summary and Results

Using the technique above we were able to confirm that the contention was occurring on a
clustered index with a sequentially increasing key value on the table which by far received the
highest number of inserts. This type of contention is not uncommon for indexes with a
sequentially increasing key value such as datetime, identity or an application generated
transaction|D.

To resolve this we used hash partitioning with a computed column and observed a 690%
performance improvement. The following table summarizes the performance of the application
before and after implementing hash partitioning with a computed column. The CPU utilization
increases broadly in line with throughput as expected after the latch contention bottleneck was
removed:

SOLOuerye, sql - (ocalt,, b,]f SOLOuerys.sql - (localit, . b, .00 /VSQLQuerrz.sql—{Iucal}‘g...‘g...?}}*]_l

Measurement Before Hash Partitioning After Hash Partitioning
Business Transactions/Sec 36 249

Average Page Latch Wait Time | 36 milliseconds 0.6 milliseconds
Latch Waits/Sec 9,562 2,873

SQL Processor Time 24% 78%

SQL Batch Requests/sec 12,368 47,045

As can be seen from the table above, correctly identifying and resolving performance issues

caused by excessive page latch contention can have a very significant positive impact on overall

application performance.

44

http://go.microsoft.com/fwlink/p/?LinkId=223212

Appendix: Secondary Technique for
Resolving Latch Contention

One possible strategy for avoiding excessive page latch contention is to pad rows with a CHAR
column to ensure that each row will use a full page. This strategy is an option when the overall
data size is very small and you need to address EX page latch contention caused by the following
combination of factors:

e Small row size

e Shallow B-tree

e Access pattern with a high rate of random insert, select, update, and delete operations

o Very small tables, such as temporary queue tables

By padding rows to occupy a full page you require SQL to allocate additional pages, making more
pages available for inserts and reducing EX page latch contention.

Padding Rows to Ensure Each Row Occupies a
Full Page

A script similar to the following can be used to pad rows to occupy an entire page:

ALTER TABLE mytable ADD Padding CHAR(5000) NOT NULL DEFAULT ('X')

Use the smallest char possible that forces one row per page to reduce the extra CPU
requirements for the padding value and the extra space required to log the row. Every
byte counts in a high performance system.

This technique is explained for completeness; in practice SQLCAT has only used this on a small
table with 10,000 rows in a single performance engagement. This technique has very limited
application due to the fact that it increases memory pressure on SQL Server for large tables and
can result in non-buffer latch contention on non-leaf pages. The additional memory pressure can
be a very significant limiting factor for application of this technique. With the amount of memory
available in a modern server a large proportion of the working set for OLTP workloads is typically
held in memory. When the data set increases to a size that it no longer fits in memory a
significant drop-off in performance will occur. Therefore, this technique is something that is only
applicable to small tables. This technique is not used by SQLCAT for scenarios such as last
page/trailing page insert contention for large tables.

@ Important
Employing this strategy can cause a large number of waits on the
ACCESS METHODS HBOT_VIRTUAL_ROOT latch type because this strategy can lead
to a large number of page splits occurring in the non-leaf levels of the B-tree. If this
occurs SQL Server must acquire shared (SH) latches at all levels followed by exclusive
(EX) latches on pages in the B-tree where a page split is possible. Check the

45

sys.dm_os_latch_stats DMV for a high number of waits on the
ACCESS METHODS HBOT_VIRTUAL_ROOT latch type after padding rows.

Appendix: SQL Server Latch Contention
Scripts

This topic contains scripts which can be used to help diagnose and troubleshoot latch contention
issues.

SQL Queries for Diagnosing Latch Contention

The following scripts can be used to diagnose latch contention issues.

For each of the following SQL queries used for diagnosing latch contention, the
resource_description column returns the resource description in the format
<DatabaselD,FilelD,PagelD> where the name of the database associated with
DatabaselD can be determined by passing the value of DatabaselD to the DB_NAME ()
function.

Query sys.dm_os_waiting_tasks Ordered by Session ID

The following sample script will query sys.dm_os_waiting_tasks and return latch waits ordered by
session ID:

/*WAITING TASKS ordered by session_id
***/
SELECT wt.session id, wt.wait type

, er.last wait type AS last wait type

, wt.wait duration ms

, wt.blocking session id, wt.blocking exec context id, resource description
FROM sys.dm os waiting tasks wt

JOIN sys.dm exec sessions es ON wt.session id = es.session_ id

JOIN sys.dm exec requests er ON wt.session id = er.session id

WHERE es.is user process = 1

AND wt.wait type <> 'SLEEP_ TASK'

ORDER BY session_ id

46

Query sys.dm_os_waiting_tasks Ordered by Wait Duration

The following sample script will query sys.dm_os_waiting_tasks and return latch waits ordered by
wait duration:

/*WAITING TASKS ordered by wait duration_ms
***/
SELECT wt.session id, wt.wait type

, er.last wait type AS last wait type

, wt.wait duration ms

, wt.blocking session_id, wt.blocking exec context id, resource description
FROM sys.dm os waiting tasks wt

JOIN sys.dm exec sessions es ON wt.session id = es.session_id

JOIN sys.dm exec requests er ON wt.session id = er.session_id

WHERE es.is user process = 1

AND wt.wait type <> 'SLEEP_ TASK'

ORDER BY wt.wait duration ms desc

Calculate Waits Over a Time Period
The following script calculates and returns latch waits over a time period.

/* Snapshot the current wait stats and store so that this can be compared over a time

period

Return the statistics between this point in time and the last collection point in

time.

**This data is maintained in tempdb so the connection must persist between each

execution**
**alternatively this could be modified to use a persisted table in tempdb. if that
is changed code should be included to clean up the table at some point.**

*/

use tempdb

go

declare @current snap time datetime

declare @previous snap_time datetime

set @current snap time = GETDATE ()

47

if not exists(select name from tempdb.sys.sysobjects where name like '# wait stats%')
create table # wait stats
(
walt type varchar (128)
,waiting tasks count bigint
,wait_time ms bigint
,avg_wait time ms int
,max_wait time ms bigint
;signal wait time ms bigint
,;avg_signal wait time int

,snap_time datetime

insert into # wait stats (

walt type
,waiting tasks count
,walt time ms
,max_wait time ms
;signal wait time ms
,snap_time

)

select
wait type
,waiting_ tasks_count
,wait time ms
,max_wait time ms
;signal wait time ms
,getdate ()

from sys.dm os wait stats

--get the previous collection point
select top 1 @previous snap time = snap time from # wait stats

where snap time < (select max(snap_time) from # wait stats)

48

order by snap time desc

--get delta in the wait stats
select top 10

s.walt type

, (e.waiting tasks count - s.waiting tasks count) as [waiting tasks count]

, (e.wait time ms - s.wait time ms) as [wait time ms]

, (e.wait time ms - s.wait time ms)/((e.waiting tasks count -

s.waiting tasks_count)) as [avg walt time ms]
, (e.max wait time ms) as [max wait time ms]
, (e.signal wait time ms - s.signal wait time ms) as [signal wait time ms]

, (e.signal wait time ms - s.signal wait time ms)/((e.waiting tasks count -

s.walting tasks count)) as [avg signal time ms]
, s.snap_time as [start time]
, e.snap_time as [end time]
, DATEDIFF(ss, s.snap time, e.snap time) as [seconds in sample]
from # wait stats e
inner join (
select * from # wait stats
where snap time = @previous_snap_time

) s on (s.walt type = e.wait_ type)

where
e.snap_time = Qcurrent snap time
and s.snap_time = @previous_snap time

and e.wait time ms > 0
and (e.waiting tasks count - s.waiting tasks count) > 0
and e.wait_type NOT IN ('LAZYWRITER SLEEP', 'SQLTRACE BUFFER_FLUSH'
, 'SOS_SCHEDULER_YIELD', 'DBMIRRORING CMD',
"BROKER TASK_STOP'
, '"CLR_AUTO EVENT', 'BROKER RECEIVE WAITFOR', 'WAITFOR'
, '"SLEEP_TASK', 'REQUEST FOR DEADLOCK SEARCH',
'XE_TIMER EVENT'
, '"FT_IFTS_SCHEDULER IDLE WAIT', 'BROKER TO FLUSH',
'XE DISPATCHER WAIT'
, "SQLTRACE INCREMENTAL FLUSH SLEEP')

49

order by (e.wait time ms - s.wait time ms) desc

--clean up table
delete from # wait stats

where snap time = @previous_ snap time

Query Buffer Descriptors to Determine Objects Causing Latch
Contention

The following script queries buffer descriptors to determine which objects are associated with the
longest latch wait times.

IF EXISTS (SELECT * FROM tempdb.sys.objects WHERE [name] like '#WaitResources%') DROP

TABLE #WaitResources;

CREATE TABLE #WaitResources (session_id INT, wait type NVARCHAR(1000), wait duration ms

INT,

resource description sysname NULL, db name NVARCHAR(1000),

schema name NVARCHAR(1000),

object name NVARCHAR(1000), index name NVARCHAR(1000));
GO
declare @WaitDelay wvarchar (16), @Counter INT, @MaxCount INT, @Counter2 INT

SELECT @Counter = 0, @MaxCount = 600, @WaitDelay = '00:00:00.100'-- 600x.1=60 seconds

SET NOCOUNT ON;
WHILE @Counter < @MaxCount
BEGIN

INSERT INTO #WaitResources (session_id, wait_type, wait_duration_ms,

resource_description)--, db name, schema name, object name, index name)
SELECT wt.session_id,
wt.walt type,
wt.wait duration ms,
wt.resource description
FROM sys.dm os waiting tasks wt
WHERE wt.wait type LIKE 'PAGELATCH%' AND wt.session id <> QE@SPID
--select * from sys.dm os buffer descriptors

SET @Counter = @Counter + 1;

50

WAITFOR DELAY @WaitDelay;

END;

--select * from #WaitResources

update #WaitResources

set db name = DB

schema name =

object name =

index name =

_NAME (bd.database_id),

s.name,

o.name,

i.name

FROM #WaitResources wt

JOIN sys.dm os buffer descriptors bd

ON bd.database id = SUBSTRING (wt.resource description, 0, CHARINDEX(':',

wt.resource description))

AND bd.file id = SUBSTRING (wt.resource description, CHARINDEX(':',
wt.resource description) + 1, CHARINDEX(':', wt.resource description, CHARINDEX(':"',
wt.resource description) +1) - CHARINDEX(':', wt.resource description) - 1)

AND bd.page id = SUBSTRING (wt.resource description, CHARINDEX(':',
wt.resource description, CHARINDEX(':', wt.resource description) +1) + 1,

LEN (wt.resource description) + 1)

JOIN

JOIN

JOIN

JOIN

JOIN

--AND wt.file index > 0 AND wt.page index > 0

sys.allocation units au ON bd.allocation unit id = AU.allocation unit id

sys

sys

sys

sys

.partitions p ON au.container id

= p.partition id

.indexes 1 ON p.index id = i.index id AND p.object id = i.object id

.objects

.schemas

o ON i.object id = o.object id

s ON o.schema id = s.schema id

select * from #WaitResources order by wait duration ms desc

GO

/*

--Other views of the same information

SELECT wait type, db name, schema name, object name, index name, SUM(wait duration ms)

[total wait duration ms] FROM #WaitResources

GROUP BY wait type, db_name,

SELECT session_id, wait type, db_name,

SUM (wait duration ms)

[total wait duration ms]

schema name, object name, index name;

schema name, object name, index name,

FROM #WaitResources

51

GROUP BY session id, wait type, db name, schema name, object name, index name;
*/
--SELECT * FROM #WaitResources

--DROP TABLE #WaitResources;

Hash Partitioning Script

The use of this script is described in Use Hash Partitioning with a Computed Column and should
be customized for purposes of your implementation.

--Create the partition scheme and function, align this to the number of CPU cores 1:1 up

to 32 core computer
-- so for below this is aligned to 16 core system
CREATE PARTITION FUNCTION [pf hashl6] (tinyint) AS RANGE LEFT FOR VALUES

(0, 1, 2, 3, 4, 5, ¢, 7, 8, 9, 10, 11, 12, 13, 14, 15)

CREATE PARTITION SCHEME [ps hashl6] AS PARTITION [pf hashl6] ALL TO ([ALL DATA])

-- Add the computed column to the existing table (this is an OFFLINE operation)

-- Consider using bulk loading techniques to speed it up
ALTER TABLE [dbo].[latch contention table]

ADD [HashValue] AS (CONVERT ([tinyint], abs(binary checksum([hash col])%(16)), (0)))

PERSISTED NOT NULL

--Create the index on the new partitioning scheme
CREATE UNIQUE CLUSTERED INDEX [IX Transaction ID]
ON [dbo].[latch contention table] ([T_ID] ASC, [HashValue])

ON ps _hashlé6 (HashValue)

52

