
SQL3 Standardization

Ki-Joon Han
Department of Computer Engineering

Kon-Kuk University
E-mail : kjhan@db.konkuk.ac.kr

URL : http://db.konkuk.ac.kr

SQL Standard
Goal: enable the portability of SQL applications across conforming
products
Side effect: Increases and stabilizes the database market
Joint efforts between vendors and users

IBM, Oracle, Informix, Microsoft, ...

Joint effort among several countries
Australia, Belgium, Brazil, Finland, France, Germany, Italy, Japan,
Korea, Netherlands, Spain, UK, USA, ...

JTC1/SC32:
Data Management and Interchange

WG1: Open EDI

WG2: Metadata

WG3: Database Languages

WG4: SQL Multimedia and Application Packages

WG5: Remote Database Access(RDA)

RG1: Reference Model for Data Management(Maintenance)

RG2: Export/Import(Maintenance)

JTC1/SC32/WG3 Projects (SQL3)
Part1: SQL/Framework 7/13/99

Part2: SQL/Foundation 7/13/99

Part3: SQL/CLI(Call-Level Interface) 9/1/99

Part4: SQL/PSM(Persistent Stored Modules) 7/13/99

Part5: SQL/Bindings withdrawal

Part6: SQL/Transaction withdrawal

Part7: SQL/Temporal 5/1/01

Part9: SQL/MED(Management of External Data) 12/1/00

Part10: SQL/OLB(Object Language Bindings) 8/1/00

Vendor extensions are allowed

Database SQL Standard
Process

Standards are produced by volunteers
Open process oriented towards achieving consensus
Proposals to change existing base document

Life cycle of an ISO standard:

Working
Draft Proposals

Committee
Draft

International
Standard

Proposals
Final

Committee
Draft

Proposals

Final Draft
International

Standard

YES/NO
vote

Technical
Corrigendum

Review every 5 years to reaffirm, replace, or withdraw

DBL Project History

ISO/IEC 9075-4:1996 (SQL/PSM for SQL92)1996

ISO/IEC 9075-3:1995 (SQL/CLI for SQL92)1995

ISO/IEC 9075:1992 (SQL92)1992

ISO/IEC 9075:1989 (SQL89)1989

ISO/IEC 9075:1986 (SQL86)1987

ANSI SQL Published – December1986

ISO Project Split into NDL and SQL1983

ANSI Project Split into NDL and SQL1982

ISO Database Project Initiated1979

ANSI Database Project Approved1978

Database Project Initiated in U.S.1977

CODASYL Database Specifications1975

Ted Codd’s first papers on Relational ModelEarly 70’s

Progression of SQL Standards
SQL/86
SQL/89 (FIPS 127-1)
SQL/89 with Integrity Enhancement
SQL/92 July 92

Entry Level (FIPS 127–2)
Intermediate Level
Full Level

SQL CLI Sept 95
SQL PSM Nov 96
SQL/3(Work in Progress)

SQL Framework July 99
SQL Foundation July 99
SQL Call Level Interface(CLI) Sept 99
SQL Persistent Stored Modules(PSM) July 99
SQL Language Bindings withdrawal
SQL Management of External Data Dec 00
SQL Object Language Bindings Aug 00

SQL/4(Work to be defined soon)
All of the above, and …
XA
SQL Temporal

SQL/86 (ISO/IEC 9075:1986)
The starting point: IBM’s SQL implementation

SQL/86 became a subset of IBM’s SQL implementation

Defined 3 ways to process DML
Direct processing
Module language
Embedded SQL

Bindings to
Cobol
Fortran
Pascal
PL/1

SQL/89 (ISO/IEC 9075:1989)
Superset of SQL/86
Replaced SQL/86
C and ADA were added to existing language bindings
DDL in a separate “schema definition language”
CREATE TABLE
CREATE VIEW
GRANT PRIVILEGES
(No DROP, ALTER, OR REVOKE)

SQL/89 with Integrity Enhancement
DEFAULT

Default value for a column when omitted at INSERT time

UNIQUE (column-list)
NOT NULL
Views WITH CHECK OPTION

Insertions to view are rejected if they don’t satisfy the view-definition

PRIMARY KEYs
CHECK constraint

Integrity constraint on values in a single row

Referential Integrity
CREATE TABLE T2
.… FOREIGN KEY (COL3) REFERENCES T1 (COL2)

Any update that would violate referential integrity is rejected

SQL/92: Overview (1/2)
Superset of SQL/89
Not “ least-common-denominator”
Significantly larger than SQL/89(579 versus 120 pages)

Data type extensions(varchar, bit, character sets, date, time & interval)
Multiple join operators
Catalogs
Domains
Derived tables in FROM clause
Assertions
Temporary tables
Referential actions
Schema manipulation language
Dynamic SQL
Scrollable cursors
Connections
Information schema tables

SQL/92: Overview (2/2)
Many (but not all) features are available in exsiting products
Divided into 3 levels

Entry level (much the same as SQL/89 with Integrity Enhancement)
Intermediate level
Full level

Features are assigned to level
Full is a superset of Intermediate
Intermediate is a superset of Entry

FIPS 127-2 defines a Transitional Level
Level between Entry and Intermediate
Subset of Intermediate
Superset of Entry

SQL/92: Entry Level
SQL/89 plus a small set of new features

SQLSTATE
8 Carries more feedback information than SQLCODE

Delimited identifiers
CREATE TABLE “SELECT”…
Named expressions in SELECT - list

SELECT name, sal+comm AS pay
FROM employee
ORDER BY pay

SQL/92: Transitional Level (1/2)
Defined by FIPS 127-2
Subset of SQL/92: Intermediate Level
Data types and operators
DATE, TIME, TIMESTAMP, INTERVAL(with arithmetic)
CHAR VARYING(n)
LENGTH, SUBSTR, TRIM, and || (concatenate) operators

Referential integrity with cascading delete
New types of join

NATURAL JOIN
LEFT and RIGHT OUTER JOIN

Dynamic SQL
PREPARE
EXECUTE
DESCRIBE

SQL/92: Transitional Level (2/2)
Schema evolution
ALTER TABLE
DROP TABLE
REVOKE PRIVILEGE

CAST(expression AS type)
Conversions among
8 Numeric types
8 Numeric <-> Character
8 Character <-> Date and Time

Standard Catalogs
TABLES VIEWS COLUMNS
PRIVILEGE

Views containing UNION
Multiple schemas(collection of tables and other objects) per user
Transaction isolation levels
READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

SQL/92: Intermediate Level (1/3)
Scrollable cursors
FULL OUTER JOIN
Domains

Macro facility for data type, default, value, nullability, and CHECK constraint
No strong typing (type checking based on underlying data type)
Not the same as Codd’s notion of domains

Online DDL
Implicit casting

Scalar-valued subquery can be used in place of any scalar

SQL/92: Intermediate Level (2/3)
Set operations between query blocks

INTERSECT
EXCEPT
CORRESPONDING (allows operators to apply to like-named columns of
tables)

CASE expression
SELECT CASE (sex)
WHEN “F” THEN “female”
WHEN “M” THEN “male”
END
…

COALESCE
Returns the first non-null value

COALESCE(EMP.AGE, “Age is null”)

SQL/92: Intermediate Level (3/3)
UNIQUE predicate
UNIQUE <subquery>

Returns true if the subquery returns no duplicates; otherwise, false
128-character identifiers
Multiple character sets (including double-byte)
SET statement to change authorization-ID
More comprehensive catalog information

Constraints
Usage
Domains
Assertions

Date and time arithmetic with time zones
SQL FLAGGER

Extensions
Conforming language being processed in a non-conforming way

SQL/92: Full Level (1/3)
Derived tables

Table-expressions in FROM-clause

Referential integrity with CASCADE UPDATE and SET NULL
Integrity assertions

Stand-alone assertions that apply to entire tables or multiple tables
Subqueries in CHECK clause
Deferred checking of constraints (including assertions)

Enhanced predicates
Multiple-column matching

WHERE (X, Y) MATCH (SELECT A, B FROM T2)
Comparison by high-order and low-order columns

WHERE (X, Y) > (A, B)

SQL/92: Full Level (2/3)
More types of join

CROSS JOIN
UNION JOIN

New data types
BIT (n)
BIT VARYING(n)

Temporary tables (vanish at end of transaction or session)
Implementation-defined collating sequences
More character-string operators

UPPER
LOWER
POSITION

INSERT privilege on individual columns

SQL/92: Full Level (3/3)
Row and table constructors
((1, ‘OPERATOR’, ‘JONES’),

(2, ‘PROGRAMMER’, ‘SMITH’),
(3, ‘MGR’, ‘MATTOS’)

)

Explicit Tables
TABLE EMP can be a subquery

DISTINCT applies to expression
SELECT COUNT (DISTINCT SAL+COMM)

Cursors declared SENSITIVE or INSENSITIVE
Updates via scrollable or ordered cursors
UPDATE and DELETE with subqueries on the same table

SQL99 Overview
Superset of SQL/92

Completely upward compatible (“object-oriented SQL”)
Significantly larger than SQL/92

Object-Relational extensions
8 User-defined data types
8 Reference types
8 Collection types (e.g., arrays)
8 Large object support (LOBs)
8 Table hierarchies

Triggers
Stored procedures and user-defined functions
Recursive queries
OLAP extensions (CUBE and ROLLUP)
SQL procedural constructs
Expressions in ORDER BY
Savepoints
Update through unions and joins

SQL99 Multipart Standard
SQL/Framework (Part 1)

Overview and conformance clause

SQL/Foundation (Part 2)
The basics: types, schemas, tables, views, query and update statements,
expressions, security model, predicates, assignment rules, transaction
management, and so forth

SQL/CLI (Call Level Interface) (Part 3)
No preprocessing of SQL statements necessary

SQL/PSM (Persistent Stored Modules) (Part 4)
Extensions to SQL to make it procedural

SQL/Bindings (Part 5)
Dynamic, embedded, direct invocation

SQL99 Framework Overview
Overview

Provides an overview of the complete standard

Conformance
Contains conformance requirements
Conformance model based on “Core SQL” and “Packages”

SQL99 Foundation Overview (1/7)
All of SQL/92 functionality

Schemas
Different kinds of joins
Temporary tables
CASE expressions
Scrollable cursors
…

New built-in data types for increased modeling power
Boolean
Large objects (LOBs)

Enhanced update capabilities
Update/delete through unions
Update/delete through joins

Other relational extensions to increase modeling and expressive power
Additional predicates (FOR ALL, FOR SOME, SIMILAR TO)
Extensions to cursors (sensitive cursor, holdable cursor)
Extensions to referential integrity (RESTRICT)
Extensions to joins

SQL99 Foundation Overview (2/7)
Triggers

Enhances integrity mechanism (active DBMS)
8 Different triggering events: update/delete/insert
8 Optional condition
8 Activation time: before or after
8 Multi-statement action
8 Several triggers per table
8 Condition and multi-statement action per each row or per statement

Roles
Enhanced security mechanisms
8 GRANT/REVOKE privileges to roles
8 GRANT/REVOKE roles to users and other roles

SQL99 Foundation Overview (3/7)
Recursion

Increase expressive power
Linear (both direct and mutual) recursion
Stop conditions
Different search strategies (depth first, breadth first)

Savepoints
Enhances user-controlled integrity
Savepoint definition
Roll back to savepoint
Nesting

OLAP extensions
Enhances query capabilities
8 CUBE
8 ROLLUP
8 Expressions in ORDER BY

SQL99 Foundation Overview (4/7)
Object-relational extensions

Extensibility
Increases modeling power (complex objects)
Reusability
Integration

User-defined types
Distinct types
8 Strong typing
8 Type-specific behavior

Structured types
8 Strong typing
8 Type-specific behaviors
8 Encapsulation
8 Value substitutability
8 Polymorphic routines
8 Dynamic binding (run-time function dispatch)
8 Compile-time type checking

SQL99 Foundation Overview (5/7)
Collection types

Arrays

Row types
Like record structures in programming languages
Type of rows in tables
Nesting (rows with row-valued fields)

Reference types
Support “object identity”
Navigational access (path expressions)

SQL99 Foundation Overview (6/7)
User-defined functions

SQL and external functions
Overloaded functions
User-defined paths
Compile time type checking
Static binding

User-defined procedures
SQL and external procedures
No overloading
Input and output parameters
Result sets
Static binding

User-defined methods
Describe a user-defined type behavior
SQL and external methods
Overloading and overriding
Compile time checking
Late binding (dynamic dispatch)

SQL99 Foundation Overview (7/7)
Subtables (table hierarchies)

Increase modeling power and expressive power of queries
Means to model collection hierarchies or object extents
8 CREATE/DROP subtable
8 CREATE/DROP subview
8 Object “identity” by means of references
8 Queries on a table operate on subtables as well
8 “Object-like” manipulation through references and path expressions
8 Extensions to authorization model to support “ object-like”

manipulation

View hierarchies (object hierarchies)

Database Objects

SQL
environment

implementation authorization
identifier catalog client

module privilege

character set

collation

schema

role

trigger

user-defined
type

table

constraint

viewed
table

domain
assertion

constraint

routine

function

method

translation

procedure

Catalogs and Schemas
SQL objects (i.e., tables, views,…) are contained in schemas
Schemas are contained in catalogs
Each schema has a single owner
Objects can be referenced with explicit or implicit catalog and schema
name

FROM people --unqualified name
FROM sample.people --partially qualified name
FROM cat1.sample.people --fully qualified name

Schema Manipulation Language
Syntax for creating objects
Syntax for dropping or revoking with two behaviors

RESTRICT
CASCADE

Syntax for altering objects
Table
8 Add/drop column
8 Alter column default and scope
8 Add/drop constraints

Domain
8 Set/drop default
8 Add/drop constraint

User-defined type
8 Add/drop attribute
8 Add/drop method

SQL-invoked routines
8 Alter routine characteristics

Data Types
Predefined types

Numeric
String
BLOB
Boolean
Datetime
Interval

Constructed atomic types
Reference

Constructed composite types
Collection: Array
Row

User-defined types
Distinct type
Structured type

Predefined Types

Numeric String Datetime Interval Boolean

Exact Approximate Time

Date Temestamp

Bit Character BLOB

Fixed Varying Fixed Varying CLOB

smallint
integer
decimal
numeric

real
float
double

Constructed Types
Atomic

Currently, only one: reference type

Composite

Row

Array

Collection

More collection types likely in SQL4

Domains
Persistent (named) definition of

A data type
An optional default value
An optional set of constraints
An optional collating sequence

Used in place of a data type
Do not provide strong typing

Not true “ relational domains”
CREATE DOMIN money AS DECIMAL (7,2);

CREATE DOMAIN account_type AS CHAR (1)
DEFAULT ‘C’
CONSTRAINT account_type_check CHECK (value IN (‘C’,’S’,’M’));

CREATE TABLE accounts
(account_id INTEGER,
balance money,
type account_type);

SQL-Invoked Routines (1/2)
Named persistent code to be invoked from SQL

SQL-invoked procedures
SQK-invoked functions
SQL-invoked methods

Created directly in a schema or in a SQL-server module
Schema-level routines
Module-level routines

Have schema-qualified 3-part names
Supported DDL

CREATE and DROP statements
ALTER statement – still limited in functionality
EXECUTE privilege controlled through GRANT and REVOKE statements

Described by corresponding information schema views

SQL-Invoked Routines (2/2)
Have a header and a body

Header consists of a name and a (possibly empty) list of parameters
Parameters of procedures may specify parameter mode

IN
OUT
INOUT

Parameters of functions are always IN
Functions return a single value

Header must specify data type of return value via RETURNS clause
SQL routines

Both header and body specified in SQL
External routines

Header specified in SQL
Bodies written in a host programming language
8 May contain SQL by embedding SQL statements in host language

programs or using CLI

SQL Routines (1/2)
Parameters

Must have a name
Can be of any SQL data type

Routine body
Consists of a single SQL statement
8 Can be a compound statement : BEGIN …END

Not allowed to contain
8 DDL statement
8 CONNECT or DISCONNECT statement
8 Dynamic SQL
8 COMMIOT or ROLLBACK statement

CREATE PROCEDURE get_balance(IN acct_id INT, OUT bal
DECIMAL(15,2))

BEGIN
SELECT balance INTO bal

FROM accounts WHERE account_id =acct_id;
IF bal <100

THEN SIGNAL low_balance
END IF;

END

SQL Routines (2/2)
Routine body

RETURN statement allowed only inside the body of a function
8 Exception raised if function terminates not by a RETURN

CREATE FUNCTION get_balance(acct_id INT) RETURNS
DECIMAL(15,2)

BEGIN
DECLARE bal DECIMAL(15,2);
SELECT balance INTO bal

FROM accounts
WHERE account_id = acct_id;

IF bal <100 THEN SIGNAL low_balance
END IF;

RETURN bal;
END

External Routines (1/2)
Parameters

Names are optional
Cannot be of any SQL data type
Permissible data types depend on the host language of the body

LANGUAGE clause
Identifies the host language in which the body is written

NAME clause
Identifies the host language code, e.g., file path in Unix
If unspecified, it corresponds to the routine name

CREATE PROCEDURE get_balance (IN acct_id INT, OUT bal
DECIMAL(15,2))
LANGUAGE C
EXTERNAL NAME ‘bank�balance_proc’

CREATE FUNCTION get_balance (IN INTEGER) RETURNS
DECIMAL(15,2)
LANGUAGE C
EXTERNAL NAME ‘usr/han/banking/balance’

External Routines (2/2)
RETURNS clause may specify CAST FROM clause
CREATE FUNCTION get_balance(IN INT)

RETURNS DECIMAL(15,2) CAST FROM REAL
LANGUAGE C

C program returns a REAL value, which is then cast to
DECIMAL(15,2) before returning to the caller

Special provisions to handle null indicators and the status of execution
(SQLSTATE)

PARAMETER STYLE SQL (is the default) : 2n + 4
PARAMETER STYLE GENERAL : 2n + 6

Routine Overloading
Multiple routines with the same unqualified name

S1.F (p1 INT, p2 REAL)
S1.F (p1 REAL, p2 INT)
S2.F (p1 INT, p2 REAL)

Within the same schema : must have a unique signature

S1.F (p1 INT, p2 REAL)
S1.F (p1 REAL, p2 INT)

Across schemas : may have the same signature

S1.F (p1 INT, p2 REAL)
S2.F (p1 INT, p2 REAL)

Only functions can be overloaded. Procedures cannot be overloaded.

Specific Names
Uniquely identifies each routine in the database

If unspecified, an implementation-dependent name is generated

CREATE FUNCTION get_balance(acct_id INTEGER)
RETURNS DECIMAL(15,2)
SPECIFIC func1
BEGIN
…
RETURN…;
END

Can only be used to identify the routine in ALTER, DROP, GRANT, and
REVOKE statements
DROP SPECIFIC FUNCTION fucn1 RESTRICT;

DDL statements can also identify a routine by providing the name and
the list of parameter types
DROP FUNCTION get_balance(INTEGER) CASCADE;

Cannot be used to invoked a routine

Routine Invocation
Procedure –invoked by a CALL statement

CALL get_balance(100, bal);

Function -- invoked as part of an expression

SELECT account_id, get_balance (account_id)
FROM accounts

Requires the invoker to have EXECUTE privilege on the routine –
Otherwise no routine will be found for the invocation

Object-Relational Support: Motivation
Database systems provide

A set of types used to represent the data in the application domain
A set of operations (functions) to manipulate these types

Increasing need for extension
New types required to better represent the application domain
New operations (functions) required to better reflect the behavior of the
types

DAY,MOTH,YEAR,…DATE

SUBSTRING, CONCAT,…CHAR

+,-,/,*,…INTEGER

FUNCTIONTYPE

WIDTH,HEIGHT,THUMBNAIL, …IMAGE

CONTAINS,SPELLCHECKING,…CHAR

+,-,INTEREST,…MONEY

FUNCTIONTYPE

Major Extensions in SQL99
Mechanism for “objects”(specific types and their behavior -
functions/methods)

User Defined Types (UDTs):Text,Image,CAD/CAM Drawing, Video...
User Defined Functions(UDFs):Contains,Display,Rotate,Play...

Support for storage/manipulation of large data types
Large Objects (LOBs):Binary, Character

Mechanism to improve the DB integrity and to allow checking of
business rules inside the DBMS

Triggers: Auditing, Cross-Referencing, Alerts …

Means to express complex data relationships such as hierarchies,
bills-of material, travel planning …

Recursion
Update through UNION and JOIN
Common Table Expressions

��������	
����
�� �������	��	�������	�����������

���������	���	���
��������������
�����������������

Object-Relational Support
Large Objects (LOBs)

Binary
Character

User-Defined Data Types
Distinct types
Structured types

Type Constructors
Row types
Reference types

Collection Types
Arrays

User-Defined Methods, Functions, and Procedures
Typed tables and views

Table hierarchies
View hierarchies (object views)

What Are Large Objects (LOBs)?
LOBs are a new set of data types

LOBs store strings of up to gigabytes

There are 2 new data types
BLOB - Binary Large Object
8 Useful for Audio, Image data

CLOB - Character Large Object
8 Useful for character data (text)

Large Object Data Types
Maintained directly in the database

Not in “external files”

LOB size can be specified at column definition time
(in terms of KB, MB, or GB)

������������� �		
���
�

����
� �������������

�		
��� ��������

����� ! ��"��#�$��

�		
���%� ��"����&��

�	'�� ��"������

How Do You Use LOBS?
LOBs may be retrieved, inserted, updated like any other type

You must acquire buffers large enough to store the LOBs
8 This may be difficult for very large LOBs
8 SQL99 provides locators to make LOB access manageable

�(���)*�

)����������� !���		
���%����	'��

���"�+��,��-�+��,,� ��-�+�����'���-

.�"& �		
���
�
/��������
�0“&	�!�1�2
’3

�		
���
� +

���
� ������������

�		
��� �������

����� ! ��"��#�$�

�		
���%� ��"����&�

�	'�� ��"�����

LOB Functions
Functions that support LOBs

CONCATENATION string1|| string2
SUBSTRING(string FROM start FOR length)
LENGTH(expression)
POSITION(search-string IN source-string)
NULLIF/COALESCE
TRIM
OVERLAY
Cast
User-defined functions
LIKE predicate

�(���)*�
)������4")���"��‘�5�6�� �7’ ����		
���%��

���"�+�8��'� ���
�

.�"& �		
���
�
/���� ���
�0‘&	�!�1�2
’3

Locators (1/2)
Locator: 4-byte value stored in a host variable that a program can use
to refer to a LOB value

Application declares locator variable, and then may set it to refer to the
current value of a particular LOB
A locator may be used anywhere a LOB value can be used

�����������	
������
�������
���

���������
����������
���

����������

�����������������
�������
���

��������

������������

��������������

���� �		
���
�
� ����!�!���"‘��#$����%’

Locators (2/2)
HOLD locator

Maintains the LOB value and locator after the commit of a transaction

FREE locator
Frees a locator and its LOB value

�������#��%�!�&!

������������'!�(
���� ���%�'#��
� ����!�!���"‘��#$����%’�

 �������
������������'!�(�

����
��

������
�����$�)'��(�#��%*
+
�,���-….��������'!�(.…/

���� ���
������������'!�(�

User-Defined Types
User-defined data types

User-defined, named type representing entities
employee, project, money, polygon, image, text, language, format, …

(1) Distinct types
8 based on a predefined types
8 no inheritance

(2) Structured types
8 one or more attributes
8 type hierarchy supported

User-defined methods and functions (operators)
User-defined operation representing the behavior of entities in the
application domain
hire, appraisal, convert, area, length, contains, ranking, …

User-Defined Distinct Types (1/2)

Before SQL99, columns could only be defined with the existing built-in
data types

There was no strong typing
Logically incompatible variables could be assigned to each other

���
����
���� �����'#�� -

����
���������������
�-01/.

������23!4�������
���	��.

������5!4���������
���	��.

������(���!�(���
���	��.

����
(�'����������
���	��/�

,��
��������'#��

��������
(�'�"�������23!4�

������������	
������

User-Defined Distinct Types (2/2)

���
��������6�'27(���!$6�

���
�-01/��
�
��

���
��������6�'27��!�(*

��
���	����
�
��

���
��������6�'27*89'(���!�(*

��
���	����
�
��

���
����
���������'#���-

����
� 6�'27(���!$6�.

������23!4 6�'27��!�(*.

������5!4 6�'27��!�(*

������(���!�(6�'27��!�(*

����
(�' 6�'27*89'(���!�(*/�

,��
��������'#��

��������
(�'�"

������23!4�

�����

,��
��������'#��

����������23!4�"

������5!4�

����������������

���������	
���
	������	�������	�����	�����������������

“No inheritance or subtyping”

User-Defined Structured Types
Column Types

E.g.,text, image, audio, video, time series, point, line,…
For modeling new kinds of facts about enterprise entities
Enhanced infrastructure for SQL/MM

Row Types
Types and functions for rows of tables
E.g., employees, departments, universities, students, …
For modeling entities with relationships & behavior
Enhanced infrastructure for business objects

������������	
��
�		�

��

�������������������

��
	����������������

������ ������ ��	

������

�

�
��

��� �� �
��

��� ��� ���

��������	
�

��
��	
�

Structured Types: Examples

����������������	�����
�� �		 �����!���
"� � ���������
� � 	 ��������
#�� ����������$��%���&

������������'�
������(&$(�%���&

�������������	��)	� � 	 ��
�
*�	� ��%���	��
���
���"	

�	��
�

� ��������
��#	 +���,�&�-����
�
"� �
� ����	���
 	.)�	�"��� �
� 	. �
/�
�)0�	*)�
�1	 '�
���
�
"2
	� �
"���$��%���&

Use of Structured Types
Wherever other (predefined data) types can be used in SQL

Type of attributes of other structured types
Type of parameters of functions, methods, and procedures
Type of SQL variables
Type of domains or columns in tables

To define tables and views

����������������	�������� �		 �������!����…���$��%���&

�������������	��)	� � 	�����… �
"� �
������	����…���$��%���&

���������(&����
�	� �	��$% �	��)	� � 	�333

Methods (1/2)
What are methods?

SQL-invoked functions “attached” to user-defined types

How are they different from functions?
Implicit SELF parameter (called subject parameter)
Two-step creation process: signature and body specified separately
Must be created in the type’s schema
Different style of invocation (UDT value.method(…))

�������������	
��
�		���
���
	 ���������
���	������� �������� �!��
�
�"� �������� �!��
�#���#���$���#%��&�#��
����%���������� ���'�#���������� �!�(

�����������%���������� &%��	
��
�		
$�)�#
…**
�#�(

Methods (2/2)
Original methods: methods attached to super type
Overriding methods: methods attached to subtypes

Invoked using dot syntax (assume dept table has mgr column)
SELECT mgr.salary() FROM dept;

�������������	
��
�		���

���
	 ��������

���	������� �������� �!��

�
�"� �������� �!��

�#���#���$���#%��&�#��

����%���������� ���'�#���������� �!�(

������������
���+	��'#����	
��
�		���

��,
-.�
�,/
���#��)���

�#���#���$���#%��&�#��

%0������#)�����%���������� ���'�#���������� �!���11
2	��/3/�+

����%��2	�,	3�� ���'�#���#��)��(��� 11
�/+/���

Creating Structured Types
System-supplied constructor function

address() -> address or real_estate() -> real_estate
8 Returns new instance with attributes initialized to their default

NEW operator
NEW <method name> <list of parameters>
8 invokes constructor function before invoking method

INSERT statement against a typed table

���������$�����
�	�,/	��%&��	���	�,�,	�…

�#������#�%���
�	�,/	��0��'����4
5�	���

�	���67������87���7���
#�9��33�	�� �‘87�6�6�3��2	*�#
�,:����-��
	�,
����� 67!6’�…�

�������
5�	�����/-	�&�%����
�	�,/	�
9������33�	���;�+	���33�	�����33�	������‘87�6�6�3��2	*�#
�,:*���-��
	�,
�

��� 67!6’�

Uninstantiable Types
Structured types can be uninstantiable

Like abstract classes in OO language
8 No system-supplied constructor function is generated
8 Types does not have instances of its own

Instances can be defined on subtypes

By default, structured types are instantiable

Distinct types are always instantiable

CREATE TYPE person AS
(name VARCHAR(30),
address address,
sex CHAR(1)) NOT INSTANTIABLE NOT FINAL

Subtyping and Inheritance (1/2)
Structured types can be a subtype of another UDT
UDTs inherit structure (attributes) and behavior (methods) from their
supertypes (single inheritance)
FINAL and NOT FINAL

FINAL types may not have subtypes
In SQL99, structured types must be NOT FINAL and distinct types must be
FINAL
In SQL4, both options will be allowed

CREATE TYPE real_estate … NOT FINAL
CREATE TYPE condo UNDER real_estate … NOT FINAL
CREATE TYPE house UNDER real_estate … NOT FINAL

�����������

�	
�	 �	
�� �	�����

Subtyping and Inheritance (2/2)
CREATE TYPE address AS
(street CHAR(30), city CHAR(20), state CHAR(2), zip INTEGER) NOT FINAL

CREATE TYPE german_addr UNDER address
(family_name VARCHAR(30)) NOT FINAL

CREATE TYPE brazilian_addr UNDER address
(neighborhood VARCHAR(30)) NOT FINAL

CREATE TYPE us_addr UNDER address
(area_code INTEGER, phone INTEGER) NOT FINAL

CREATE TYPE us_bus_addr UNDER us_addr
(bus_area_code INTEGER, bus_phone INTEGER) NOT FINAL

�������

�����
����� ��������
�����
������

���
������

Value Substitutability (1/2)
Each row can have a value a difference subtype

INSERT INTO properties (price, owner, location)
VALUES (US_dollar (100000), REF(’Mr.S.White’), New us_addr (‘1654 Health Road’,
‘Health’, ‘OH’, 45394, ...))

INSERT INTO properties (price, owner, location)
VALUES (real (400000), REF(‘Mr.W.Green’), NEW brazilian_addr(‘245 Cons. Xavier
da Costa’, ‘Rio de Janeiro’, ‘Copacabana’))

INSERT into PROPERTIES (price, owner, location)
VALUES(german_mark (150000), REF(‘Mrs.D.Black’), NEW german_addr(‘305 Kurt-
Schumacher Strasse’, ‘Kaiserslautern’, ‘Prof. Dr. Heuser’)) type tag

price owner Location
<us_dollar>
amount 100,000

‘Mr.S.White’ <us_addr>
‘1654 Health …’

<real>
amount 400,000

‘Mr.W.Green’ <brazilian_addr>
‘245 Cons.Xavier…’

<german_mark>
amount 150,000

‘Mrs. D. Black’ <german_addr>
‘305 Kurt-Schumacher…’

Value Substitutability (2/2)
An instance of a subtype can be found at runtime
(requires dynamic dispatch - late binding)

SELECT owner, price.dollar_amount ()
FROM properties
WHERE price.dollar_amount () < US_dollar (500000)

Will cause the invocation of a different method, depending on the type of
money stored in the column PRICE (i.e., US_dollar, CDN_dollar, D_mark,
S_frank, real, …)
Only methods are dynamically dispatched
8 Functions are statically selected

Structured Types as Column Types (1/3)
(1) (2)
CREATE TYPE envelope (CREATE TYPE geometry (

xmin INTEGER, gtype INTEGER,
ymin INTEGER, refsystem INTEGER,
xmax INTEGER, tolerance FLOAT,
ymax INTEGER); area FLOAT,

length FLOAT,
mbr envelope,
numparts INTEGER,

CREATE TYPE point UNDER geometry; numpoints BLOB(1m),
CREATE TYPE line UNDER geometry; points BLOB(1m),
CREATE TYPE polygon UNDER geometry; zvalue BLOB(500k),

measure BLOB(500k));
(3) (4)
CREATE FUNCTION distance CREATE FUNCTION within
(s1 geometry, s2 geometry) (s1 geometry, s2 geometry)
RETURNS BOOLEAN RETURNS BOOLEAN
EXTERNAL NAME EXTERNAL NAME
‘/usr/lpp/db2se/gis!shapedist’ ‘/usr/lpp/db2se/gis!shapewithin’

… ...

Structured Types as Column Types (2/3)
(5)
CREATE TABLE customers (CUSTOMERS

cid INTEGER,
name VARCHAR(20),
income INTEGER,
addr CHAR(20),
loc point);

STORES
CREATE TABLE stores (

sid INTEGER,
name VARCHAR(20),
addr CHAR(20),
loc point,
zone polygon); SALES

CREATE TABLE sales (
sid INTEGER,
cid INTEGER,
amount INTEGER);

CID NAME INCOME ADDR LOC

S I D N A M E A D D R L O C Z O N E

SID CID AMOUNT

Structured Types as Column Types (3/3)
(6)
“Tell me the all the information I have about each customer who either

lives within a stores’ zone or within 100 miles of the store.”

SELECT * FROM stores s, customers c
WHERE within(c.loc, s.zone) = 1

OR distance(c.loc, s.loc) < 100
ORDER BY s.name, c.name;

Structured Types as Row Types:
Typed Tables

Structured types can be used to define typed tables
Attributes of type become columns of table
Plus one column to define REF value for the row (object id)

CREATE TYPE real_estate AS
(owner REF (person),
price money,
rooms INTEGER,
size DECIMAL(8,2),
location address,
text_description text,
front_view_image bitmap,
document doc) NOT FINAL

CREATE TABLE properties OF real_estate
(REF IS oid USER GERNERATED)

Reference Types
Structured types have a corresponding reference type

Can be used wherever other types can be used

Representation
User generated (REF USING <predefined type>)
System generated (REF IS SYSTEM GENERATED) : default
Derived from a list of attributes (REF (<list of attributes>)

CREATE TYPE real_estate AS (owner REF (person),…)
NOT FINAL REF USING INTEGER

CREATE TYPE person AS (ssn INTEGER, name CHAR(30), …)
NOT FINAL REF (ssn)

Subtables: Table Hierarchies
Typed tables can have subtables

Inherit columns, constraints, triggers, … of the supertable

CREATE TYPE person… NOT FINAL
CREATE TYPE real_estate … NOT FINAL
CREATE TYPE condo UNDER real_estate … NOT FINAL
CREATE TYPE house UNDER real_estate … NOT FINAL

CREATE TABLE people OF person (…)
CREATE TABLE properties OF real_estate
CREATE TABLE condos OF condo UNDER properties
CREATE TABLE houses OF house UNDER properties

owner
������ ����������

	�
������
��

Substitutability
Queries on table hierarchies range over the rows of every subtable

SELECT price, location.city, location.state FROM properties
WHERE contains (text_description, ‘excellent school district’)

Returns properties, condos, and houses

����������

	�
������
��

Object Views (1/2)
Views have been extended to support

Typed views owner
View hierarchies
References on base
tables can be mapped
to references on views owner

view hierarchy

����������

������	��

������

����	��

���
�� ������

������	��
 ����	��

����������

���
�	��
 ����	��

������

���������	�	
���

�
��	

�
��	

Object Views (2/2)
CREATE TYPE propViewType AS
(owner REF (person),
location address) NOT FIANL

CREATE TYPE condViewType UNDER propViewType…
CREATE TYPE housViewType UNDER propViewType …

CREATE VIEW propView OF propViewType
REF IS propID USER GENERATED
(owner WITH OPTIONS SCOPE peopleView)
AS (SELECT owner, location FROM ONLY (properties))

CREATE VIEW housView OF housViewType UNDER propView
AS (SELECT owner, location FROM ONLY (houses))

CREATE VIEW condView OF condViewType UNDER propView
AS (SELECT owner, location FROM ONLY (condos))

�
���
������	
�� ����	
��

��
�	
�� ����	
��

Arrays (1/3)
The only collection type of SQL99
Why arrays?

Tables with collection-valued columns
8 “repeating groups”
8 n1NF tables

Heavily used in Standard Type Libraries
8 SQL/MM Full-Text
8 SQL/MM Spatial

Array characteristics
Maximal length vs actual length (like CHARACTER VARYING)
Any element type admissible (except array types)
Substitutability applies at element level
“Arrays anywhere”

Arrays (2/3)
Tables with array-valued columns

CREATE TABLE reports
(id INTEGER,
authors VARCHAR(15) ARRAY[20],
title VARCHAR(100),
abstract FullText)

Appropriate DML operations

INSERT INTO reports(id, authors, title)
VALUES (10, ARRAY [‘Date’, ‘Darwen’], ‘A Guide to the SQL Standard’)

Arrays (3/3)
SELECT id, authors[1] AS name FROM reports

SELECT r.id, a.name
FROM reports AS r, UNNEST(r.authors) AS a(name)

SQL TYPE IS point AS LOCATOR pointvar;

EXEC SQL SELECT center INTO :pointvar
FROM circles WHERE …

EXEC SQL UPDATE circles
SET center = :pointvar
WHERE ...

New and Extended Predicates
Extensions

BETWEEN predicate (syntactic sugar)
LIKE predicate (BLOB support)
Matching rows : SIMPLE match (syntactic salt)

New predicates
DISTINCT predicate (no simple match)
SIMILAR predicate (GREP facilities)
Type predicate (test dynamic types)

Recursive SQL
“Find the cheapest flight from Paris to San Jose or San Francisco.”
WITH RECURSIVE Reachable_From (Source, Destin, Total_Cost) AS
(SELECT Source, Destination, Cost

FROM Flights
WHERE Source = ‘Paris’

UNION
SELECT in.Source, out.Destination, in.Total_Cost+out.Cost
FROM Reachable_From in, Flights out
WHERE in.Destin = out.Source

)
SELECT Source, Destin, MIN(Total_Cost)
FROM Reachable_From
WHERE Destin in (‘San Jose’, ‘San Francisco’)
GROUP BY Source, Destin
Flights

Source Destination Carrier Cost
Paris Detroit KAL 7
Paris New York KAL 6
Paris Boston AA 8

New York Chicago AA 2
Boston Chicago AA 6
Detroit San Jose AA 4
Chicago San Jose AA 2

SQL99 OLAP SQL Extensions

Extension to GROUP BY clause

Produces “super aggregate” rows

ROLLUP equivalent to “control breaks”

CUBE equivalent to “cross tabulation”

GROUPING SETS equivalent to multiple GROUP BYs

Provides “data cube” collection capability

Often used with data visualization tool

OLAP Schema
Typically used a “STAR” structure

Dimension tables tend to be small
Fact table tends to be huge

CREATE VIEW Sales AS
(SELECT ds.*, YEAR(sales_date) AS year, MONTH(sales_date) AS month,
DAY(sales_date) AS day
FROM(Detailed_Sales NATURAL JOIN Store NATURAL JOIN Product
NATURAL JOIN Period) ds

ROLLUP (1/2)
Extends grouping semantics to produce “subtotal” rows

Produces “regular” grouped rows
Produces same groupings reapplied down to grand total

ROLLUP (2/2)
Find the total sales per region and sales manager during each month of 1996,
with subtotals for each month, and concluding with the grand total:
SELECT month, region, sales_mgr, SUM(price)
FROM Sales
WHERE year=1996
GROUP BY ROLLUP(month, region, sales_mgr)

95000-
40000-May
15000-NorthWestMay
15000SmithNorthWestMay
25000-CentralMay
25000ChowCentralMay
55000--April
15000-NorthWestApril

15000SmithNorthWestApril
40000-CentralApril
15000SmithCentralApril
25000ChowCentralApril

SUM(price)SALES_MGRREGIONMONTH

-- -

CUBE
Further extends grouping semantics to produce multidimensional grouping and
“subtotal” rows

Superset of ROLLUP
Produces “regular” grouped rows
Produces same groupings reapplied down to grand total
Produces additional groupings on all variants of the CUBE clause

SELECT month, city, product_id, SUM(units)
FROM Sales
WHERE year=1998
GROUP BY CUBE (month, city, product.id) All

Month Store Product

Store
w/in

Month

Product
w/in

Month

Month
w/in
Store

Product
w/in
Store

Store
w/in

Product

Product
w/in
Store
w/in

Month

Store
w/in

Product
w/in

Month

Product
w/in

Month
w/in
Store

Month
w/in

Product
w/in
Store

Store
w/in

Month
w/in

Product

Month
w/in
Store
w/in

Product

Month
w/in

Product

SELECT…GROUP BY CUBE
SELECT month, region, sales_mgr, SUM(price)
FROM Sales
WHERE year=1996
GROUP BY CUBE(month, region, sales_mgr)

95000---
45000Smith--
50000Chow--
30000-NorthWest-
30000SmithNorthWest-
65000-Central-
15000SmithCentral-
50000ChowCentral-
40000--May
15000Smith-May
25000Chow-May
15000-NorthWestMay
15000SmithNorthWestMay
25000-CentralMay
25000ChowCentralMay
55000--April
30000Smith-April
25000Chow-April
15000-NorthWestApril
15000SmithNorthWestApril
40000-CentralApril
15000SmithCentralApril
25000ChowCentralApril

SUM(price)SALES_MGRREGIONMONTH

GROUPING SETS
Multiple “groupings” in a single pass

Used in conjunction with usual aggregation(MAX, MIN, SUM, AVG, COUNT,
…)
Allows multiple groups e.g. (month, region) and (month, sales_mgr)
Result can be further restricted via HAVING clause

Find the total sales during each month of 1996, per region and per sales manager:
SELECT month, region, sales_mgr, SUM(price)
FROM Sales
WHERE year = 1996
GROUP BY GROUPING SETS((month, region),(month, sales_mgr))

15000Smith-May

25000Chow-May

15000-NorthWestMay

25000-CentralMay

30000Smith-April

25000Chow-April

15000-NorthWestApril

40000-CentralApril

SUM(SALES)SALES_MPRREGIONMONTH

Generating Grand Total Rows
Special syntax available to include a “grand total” row in the result

Grand totals are generated implicitly with ROLLUP and CUBE operations
Syntax allows grand totals to be generated without additional aggregates

Get total sales by month, region, and sales manager and also the
overall total sales:
SELECT month, region, sales_mgr, SUM(price)
FROM Sales
WHERE year=1996
GROUP BY GROUPING SETS((month, region), ())

95000---
15000SmithNorthWestMay
25000ChowCentralMay
15000SmithNorthWestApril
15000SmithCentralApril
25000ChowCentralApril

SUM(SALES)SALES_MPRREGIONMONTH

The GROUPING Function
New column function

Allows detection of rows that were generated during the execution of CUBE
and ROLLUP.
i.e., generated nulls to be distinguished from naturally occurring ones

Run a rollup, and flag the generated rows…

SELECT month, region, sales_mgr, SUM(price), GROUPING(sales_mgr)
FROM Sales
WHERE year=1996
GROUP BY ROLLUP (month, region, sales_mgr)

Result…
SELECT month, region, sales_mgr, SUM(price), GROUPING(sales_mgr) AS
GROUPED
FROM Sales
WHERE year=1996
GROUP BY ROLLUP (month, region, sales_mgr)

195000---
140000--May
115000-NorthWestMay
015000SmithNorthWestMay
125000-CentralMay
025000ChowCentralMay
155000--April
115000-NorthWestApril
015000SmithNorthWestApril
140000-CentralApril
015000SmithCentralApril
025000ChowCentralApril

GROUPEDSUM(SALES)SALES_MPRREGIONMONTH

Selecting Nongrouped Columns
Nongrouped columns can sometimes to selected based on
functional dependencies:

SELECT e.deptno, d.location, AVG(e.salary) AS average
FROM Emp e, Dept d
WHERE e.deptno=d.deptno
GROUP BY e.deptno

e.deptno determines d.deptno (equals in WHERE clause),
And d.deptno determines d.location (deptno is PK of Dept);
Therefore, d.deptno and d.location are consistent within any
group. This is functional dependency analysis in action.

SELECT e.deptno, e.name, AVG(e.salary) AS Average
FROM Emp e, Dept d
WHERE e.deptno=d.deptno
GROUP BY e.deptno

Legal

ILLEGAL

Cursors (1/2)
In SQL89, FETCH always retrieves “next” row
Scrollable cursors (in SQL92)

Allows both forward and backward movement of the cursor
Allows skipping of rows

EXEC SLQ DECLARE c SCROLL CURSOR FOR SELECT…;
EXEC SQL OPEN c;
EXEC SLQ FETCH ABSOLUTE 10 FROM c INTO …;
EXEC SQL FETCH RELATIVE 32 FROM c INTO …;
EXEC SQL FETCH PRIOR FROM c INTO …;

FETCH options are:
FIRST
LAST
NEXT
PRIOR
ABSOLUTE n
RELATIVE n

Cursors (2/2)
Cursor sensitivity (in SQL99)

SENSITIVITY : changes are visible
INSENSITIVITY : changes are invisible

EXEC SQL DECLARE CURSOR SENSITIVITY FOR
SELECT * FROM People;

Holdable cursors (in SQL99)
remain open when a transaction is committed
closed and destroyed when
8 transaction is rolled back
8 session is terminated

Transaction Management
New statements for

Explicitly starting TXs
8 Also sets TX characteristics

Establishing savepoints
Destroying savepoints

INSERT INTO People (Lname, Fname, Nick)
VALUES (‘Doe’, ‘John’, ‘Hans’);

SAVEPOINT SP1

UPDATE People SET Nick=‘Jean’
WHERE Lname=‘Doe’

ROLLBACK TO SAVEPOINT SP1

Connections
Associations between an SQL-client and an SQL-server
There is an SQL-session associated with each connection

env=“IBMSYS”;
connect=“STLconnection”;
user=“Todd”;
EXEC SQL CONNECT TO :env AS :connect USER :user

…
EXEC SQL COMMIT;
env=“IBMSYS2”;
EXEC SQL SET CONNECTION :env;

Transactions that affect more than one SQL-environment do not have
to be supported.

Module Language
Module definition
module read
Language C
Authorization reader
DECLARE people CURSOR FOR

SELECT last, first
FROM hobbies
WHERE hobbies=:h

PROCEDURE open_people (SQLSTATE, :h CHAR(5));
OPEN people;

PROCEDURE fetch_people (SQLSTATE, :last CHAR(20), :first CHAR(20));
FETCH people INTO :last, :first;

PROCEDURE close_people SQLSTATE;
CLOSE people;

Application program
main()
{
char SQLSTATE[6];
char last[21], first[21];
OPEN_PEOPLE(SQLSTATE, “travel”);

while…
FETCH_PEOPLE(SQLSTATE, last, first);

}

SQL99 PSM (1/3)
Procedural Extensions

Improve performance in a centralized and client/server environments

8 Multiple SQL statements in a single EXEC SQL

8 Multi-statement procedures, functions, and methods

Gives great power to DBMS

8 Several, new control statements (procedural language extension)
(begin/end block, assignment, call, case, if, loop, for, signal/resignal,
variables, exception handling)

SQL-only implementation of complex functions

8Without worrying about security (“firewall”)

8Without worrying about performance (“local call”)

SQL-only implementation of class libraries

SQL99 PSM (2/3)
Includes two major aspects

Procedural extensions (control statements) - feature from block-structured languages,
including exception handling
SQL-server modules - groups of SQL-invoked routines managed as named, persistent
objects

C program with embedded SQL statements
void main
{
EXEC SQL INSERT INTO employee
VALUES (…);
EXEC SQL INSERT INTO department
VALUES (…);
}

Using PSM-96 procedural extensions
void main
{
EXEC SQL
BEGIN
INSERT INTO employee VALUSE (…);
INSERT INTO department VALUSE (…);
END;
}

SQL99 PSM (3/3)
If we create a SQL procedure first:
CREATE PROCEDURE proc1 ()
{
BEGIN
INSERT INTO employee VALUSE (…);
INSERT INTO department VALUSE (…);
END;
}

Then the embedded program can be written as
void main
{
EXEC SQL CALL proc1 ();
}

SQL Procedural Language Extensions
Compound statement
SQL variable declaration
If statement

Case statement

Loop statement

While statement
Repeat statement

For statement

Leave statement
Return statement
Call statement
Assignment statement
Signal/resignal statement

BEGIN … END;
DECLARE var CHAR(6);
If subject (var<>’urgent’)
THEN … ELSE …;
Case subject (var)
WHEN ‘SQL’ THEN …
WHEN …;
Loop <SQL statement list>
END LOOP;
While i<100 DO … END WHILE;
REPEAT … UNTIL i<100 END
REPEAT;
For result AS … DO … END
FOR;
LEAVE …;
RETURN ‘urgent’;
CALL procedure_x (1,3,5);
SET x=‘abc’;
SIGNAL division_by_zero

SQL99 Bindings

Embedded SQL
An embedded host language program is transformed into a pure host
language program and an “abstract” SQL module

Dynamic SQL
When the tables, columns, or predicates are not known when the
application is written

EXEC SQL PREPARE stmt FROM …;
EXEC SQL EXECUTE stmt …;

…
Direct SQL

Implementation-defined mechanism for executing direct SQL statements

Call Level Interface (CLI)
Functional interface to database
Consists of over 40 routine specifications

Control connections to SQL-servers
Allocate and deallocate resources
Execute SQL statements
Control transaction termination
Obtain information about the implementation

SQL99 CLI (1/2)
SQL99 data type support

BOOLEAN

LOBs with optional locators and helper routines (GetLength,
GetPosition, GetSubstr)

UDTs with locators and transformation functions

Arrays with locators only

Reference types with table scope

Can retrieve/store unnamed ROW types

SQL99 CLI (2/2)
CLI descriptor model aligned with ODBC 3.x (defaults, Get/Set
restrictions, etc.)

JDBC 2.0 support for user-defined types

Multi-row fetch ODBC

Catalog routines aligned with SQL99 and ODBC

Parallel result set processing after CALL statement

SQL99 savepoints

General SQL99 alignment(roles, user-defined casts, SQLSTATEs,
etc.)

Web References
ISO (International Organization for Standardization)

http://www.iso.ch

JTC1 SC32 - Data Management and Interchange
http://bwonotes5.wdc.pnl.gov/SC32/JTC1SC32.nsf

ANSI (American National Standards Institute)
http://web.ansi.org

NCITS (National Committee for Informational Technology Standards)
http://www.ncits.org/

KISI (Korean Industrial Standards Institute)
http://www.kisi.or.kr

KDPC (Korea Database Promotion Center)
http://www.dpc.or.kr

