Simple Parallel Computing in R Using Hadoop

Stefan TheuBl

WU Vienna University of Economics and Business
Augasse 2—6, 1090 Vienna

Stefan.Theussl@wu.ac.at

30.06.2009

Agenda

Problem & Motivation

The MapReduce Paradigm
Package hive

Distributed Text Mining in R

Discussion

Motivation

Recap of my talk last year:

» Computer architecture: distributed memory (DMP) and
shared memory platforms (SMP)

» Types of parallelism: functional or data-driven

» Parallel computing strategies: threads (on SMP),

message-passing (on DMP), high-level abstractions (e.g.,
packages snow, nws)

Motivation

Main motivation: large scale data processing
» Many tasks, i.e. we produce output data via processing lots of
input data
» Want to make use of many CPUs

» Typically this is not easy (parallelization, synchronization,
I/O, debugging, etc.)

» Need for an integrated framework

» preferably usable on large scale distributed systems

The MapReduce Paradigm

The MapReduce Paradigm

» Programming model inspired by functional language
primitives

» Automatic parallelization and distribution

» Fault tolerance

» 1/0 scheduling

» Examples: document clustering, web access log analysis,

search index construction, ...

¥ Jeffrey Dean and Sanjay Ghemawat.
MapReduce: Simplified data processing on large clusters.
In OSDI'04, 6th Symposium on Operating Systems Design and
Implementation, pages 137-150, 2004.

Hadoop (http://hadoop.apache.org/core/) developed by
the Apache project is an open source implementation of
MapReduce.

http://hadoop.apache.org/core/

The MapReduce Paradigm

Distributed Data

‘ Local Data ‘ Local Data, ‘ Local Data

][]

Intermediate Data

‘ Partial Result ‘ Partial Result ‘ Partial Result

Aggregated Result

Figure: Conceptual Flow

The MapReduce Paradigm

A MapReduce implementation like Hadoop typically
provides a distributed file system (DFS):

vV v v Y

Master/worker architecture (Namenode/Datanodes)
Data locality
Map tasks are applied to partitioned data

Map tasks scheduled so that input blocks are on same
machine

» Datanodes read input at local disk speed

» Data replication leads to fault tolerance

» Application does not care whether nodes are OK or not

The MapReduce Paradigm

HDFS Architecture

Namenode /homeffoo/data, 3, ...

Metadata (Name, replicas, ...):

Metadata ops |

Read Datanodes Datanodes

' \ \
B HE = = Replication ‘ B e =
g

o = Blocks
N _ —
Rack 1 Write Rack 2

Figure: HDFS architecture

Source: http://hadoop.apache.org/core/docs/r0.20.0/hdfs_design.html

http://hadoop.apache.org/core/docs/r0.20.0/hdfs_design.html

Hadoop Streaming

» Utility allowing to create and run MapReduce jobs with any
executable or script as the mapper and/or the reducer

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar
» -input inputdir
» -output outputdir
» -mapper ./mapper

» -reducer ./reducer

Local Data Intermediate Data, Processed Data

stdin() éou‘c() std&)\ / stdout()

R: Map R: Reduce

Hadoop InteractiVE (hive)

Hadoop InteractiVE (hive)

hive provides:
» Easy-to-use interface to Hadoop

» Currently, only Hadoop core
(http://hadoop.apache.org/core/) supported

» High-level functions for handling Hadoop framework
(hive_start (), hive_create(), hive_is_available(),
etc.)

» DFS accessor functions in R (DFS_put (), DFS_1ist (),
DFS_cat (), etc.)

» Streaming via Hadoop (hive_stream())

» Available on R-Forge in project RHadoop

http://hadoop.apache.org/core/

hive: How to Get Started?

Prerequisites:
» Java 1.6.x
» Passwordless ssh within nodes

> Best practice: provide everything via shared filesystem (e.g.,
NFS).

hive: How to Get Started?

Installation:

» Download and untar Hadoop core from
http://hadoop.apache.org/core/

» Modify JAVA_HOME environment variable in
/path/to/hadoop-0.20.0/conf/hadoop-env.sh
appropriately

» Further (optional) configuration:
mapred-site.xml e.g., configuration of number of parallel tasks

(mapred.tasktracker.map.tasks.maximum)
core-site.xml e.g., where is the DFS managed?
(fs.default.name)
hdfs-site.xml e.g., number of chunk replication
(dfs.replication)
» Export HADOOP_HOME environment variable

» Start Hadoop either via command line or with hive_start ()

http://hadoop.apache.org/core/

Example: Word Count

Data preparation:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

> library("hive")

Loading required package: rJava
Loading required package: XML

> hive_start ()

> hive_is_available ()

[1] TRUE

> DFS_put("~/Data/Reuters/minimal", "/tmp/Reuters")

> DFS_list("/tmp/Reuters")

[1] "reut-00001.xml" "reut-00002.xml" "reut-00003.xml"
[4] "reut-00004.xml" "reut-00005.xml" "reut-00006.xml"
[7] "reut-00007.xml" "reut-00008.xml" "reut-00009.xml"
> head(DFS_read_lines("/tmp/Reuters/reut-00002.xml"))

[1] "<?xml version=\"1.0\"7?7>"

[2] "<REUTERS TOPICS=\"NO\" LEWISSPLIT=\"TRAIN\" [...]
[3] " <DATE>26-FEB-1987 15:03:27.51</DATE>"

[4] ™ <TOPICS/>"

[5] " <PLACES>"

[6] "™ <D>usa</D>"

Example: Word Count

1 mapper <- function(){

2 mapred_write_output <- function(key, value)
3 cat (sprintf ("%s\t%s\n", key, value), sep = "")
5 trim_white_space <- function(line)

6 gsub (" (" +)|(C +$)", "", line)

7 split_into_words <- function(line)

8 unlist(strsplit(line, "[[:space:]J]1+"))

10 con <- file("stdin", open = "r"

11 while (length(line <- readLines(con, n = 1,
12 warn = FALSE)) > 0) {

13 line <- trim_white_space(line)

14 words <- split_into_words(line)

15 if (length(words))

16 mapred_write_output (words, 1)

17 }

18 close(con)

19 }

Example: Word Count

1 reducer <- function(){

2 [...]

3 env <- new.env(hash = TRUE)

4 con <- file("stdin", open = "r"

5 while (length(line <- readLines(con, n = 1,

6 warn = FALSE)) > 0) {

7 split <- split_line(line)

8 word <- split$word

9 count <- split$count

10 if (nchar (word) > 0){

11 if (exists(word, envir = env, inherits = FALSE)) {
12 oldcount <- get(word, envir = env)

13 assign(word, oldcount + count, envir = env)
14 }

15 else assign(word, count, envir = env)

16 }

17 ¥

18 close (con)

19 for (w in 1ls(env, all = TRUE))

20 cat (w, "\t", get(w, envir = env), "\n", sep = "")

21}

Example: Word Count

16

18
19
20

> hive_stream(mapper = mapper,
reducer = reducer,
input = "/tmp/Reuters",
output = "/tmp/Reuters_out")
> DFS_1list("/tmp/Reuters_out")
[1] "_logs" "part-00000"

> results <- DFS_read_lines(
"/tmp/Reuters_out/part-00000")
> head(results)
[11 "-\¢2" "o-\tT
[3] ":\t1v "\t
[5] "0064</UNKNOWN>\t1" "0066</UNKNOWN>\t1"
> tmp <- strsplit(results, "\t")
> counts <- as.integer(unlist(lapply(tmp, function(x)
x[[2]11)))
> names (counts) <- unlist(lapply(tmp, function(x)
x[[111))
> head(sort (counts, decreasing = TRUE))
the to and of at said
58 44 41 30 25 22

hive: Summary

v

Further functions: DFS_put_object (), DFS_cat(),
hive_create(), hive_get_parameter(), ...

Currently, heavy usage of command line tools
Java interface in preparation (presentation @ useR 2009)

Use infrastructure of package HadoopStreaming?

vV v v VY

Higher-level abstraction (e.g., variants of apply())

Application: Text Mining in R

Why Distributed Text Mining?

» Highly interdisciplinary research field utilizing techniques from
computer science, linguistics, and statistics

» Vast amount of textual data available in machine readable
format:

» scientific articles, abstracts, books, ...
» memos, letters, ...
» online forums, mailing lists, blogs, ...

» Data volumes (corpora) become bigger and bigger

» Steady increase of text mining methods (both in academia as
in industry) within the last decade

» Text mining methods are becoming more complex and hence
computer intensive

» Thus, demand for computing power steadily increases

Why Distributed Text Mining?

» High Performance Computing (HPC) servers available for a
reasonable price

> Integrated frameworks for parallel/distributed computing
available (e.g., Hadoop)

» Thus, parallel/distributed computing is now easier than ever

» Standard software for data processing already offer extensions
to use this software

Text Mining in R

» tm Package
» Tailored for
» Plain texts, articles and papers

» Web documents (XML, SGML, ...

» Surveys
» Methods for
» Clustering

» Classification
» Visualization

Text Mining in R

¥ |. Feinerer

tm: Text Mining Package, 2009
URL http://CRAN.R-project.org/package=tm
R package version 0.3-3

I. Feinerer, K. Hornik, and D. Meyer

Text mining infrastructure in R

Journal of Statistical Software, 25(5):1-54, March 2008
ISSN 1548-7660

URL http://www.jstatsoft.org/v25/105

http://CRAN.R-project.org/package=tm
http://www.jstatsoft.org/v25/i05

Distributed Text Mining in R

Example: Stemming
» Erasing word suffixes to retrieve their radicals

» Reduces complexity
» Stemmers provided in packages Rstem! and Snowball?

Data:

» Wizard of Oz book series (http://www.gutenberg.org): 20
books, each containing 1529 — 9452 lines of text

> Reuters-21578: one of the most widely used test collection for
text categorization research

» (New York Times corpus)

'Duncan Temple Lang (version 0.3-0 on Omegahat)
2Kurt Hornik (version 0.0-3 on CRAN)

http://www.gutenberg.org

Distributed Text Mining in R

Motivation:

» Large data sets

» Corpus typically loaded into memory

» Operations on all elements of the corpus (so-called
transformations)

Available transformations: stemDoc (), stripWhitespace(),
tmTolower (), ...

Distributed Text Mining Strategies in R

Strategies:

» Text mining using tm and Hadoop/hive!

» Text mining using tm and MPI/snow?

!Stefan TheuBl (version 0.1-1)
2Luke Tierney (version 0.3-3)

Distributed Text Mining in R

Solution (Hadoop):

» Data set copied to DFS (‘DistributedCorpus’)

» Only meta information about the corpus in memory

» Computational operations (Map) on all elements in parallel)
» Work horse tmMap ()

» Processed documents (revisions) can be retrieved on demand

Distributed Text Mining in R - Listing

1 > library("tm")

2 Loading required package: slam

3 > input <- "7 /Data/Reuters/reuters_xml"
4 > co <- Corpus(DirSource (input), [...])
5 > co

6 A corpus with 21578 text documents

7 > print (object.size(co), units = "Mb")
8 65.5 Mb

10 > source("corpus.R")

11 > source("reader.R")

12 > dc <- DistributedCorpus(DirSource (input), [...])
13 > dc

14 A corpus with 21578 text documents

15 > dc[[1]]

16 Showers continued throughout the week in
1w [...]

18 > print (object.size(dc), units = "Mb")

19 1.9 Mb

Distributed Text Mining in R - Listing

Mapper (called by tmMap):

1 mapper <- function(){

2 require ("tm")

3 fun <- some_tm_method

4 [...]

5 con <- file("stdin", open = "r"

6 while(length(line <- readlLines(con, n = 1L,
7 warn = FALSE)) > 0) {
8 input <- split_line(line)

9 result <- fun(input$value)

10 if (length(result))

11 mapred_write_output (input$key, result)
12 ¥

13 close(con)

14}

Distributed Text Mining in R

Infrastructure:
» Development platform: 8-core Power 6 shared memory system

_ﬂ IBM System p 550
4 2-core IBM POWER6 @ 3.5 GHz

128 | GB RAM

» Computers of PC Lab used as worker nodes
» 8 PCs with an Intel Pentium 4 CPU @ 3.2 GHz and 1 GB of
RAM
» Each PC has > 20 GB reserved for DFS

MapReduce framework:
» Hadoop (implements MapReduce + DFS)
» R (2.9.0) with tm (0.4) and hive (0.1-1)
» Code implementing ‘DistributedCorpus’
» Cluster installation coming soon (loose integration with SGE)

Benchmark

Reuters-21578:
» Single processor runtime (lapply ()): 133 min.
» tm/hive on 8-core SMP (hive_stream()): 4 min.

» tm/snow on 8 nodes of cluster@WU (parLapply()): 2.13
min.

Benchmark

Runtime Speedup
] ~
o
o _J
3 © -
—_ w0
=]
o B El
E “ S <« 4
5 i 2
&z n
o ™ -
o _|
n
-
— N A
g -
0 T T T T T T"71 T 1T T 1
1 2 3 4 5 6 7 8 1 2 3 45

Distributed Text Mining in R

Excursion: How to store text files in the DFS

» Requirement: access text documents in R via [[

» Difficult to achieve: almost random output after calling map
in Hadoop

» Qutput chunks automatically renamed to part-xxxxx.

» Solution: add meta information to each chunk (chunk name,
position in the chunk)

» Update DistributedCorpus after Map process

Lessons Learned

» Problem size has to be sufficiently large
» Location of texts in DFS (currently: ID = file path)
» Thus, serialization difficult (how to update text IDs?)

» Remote file operation on DFS around 2.5 sec. (will be
significantly reduced after Java implementation)

Conclusion

MapReduce has proven to be a useful abstraction
Greatly simplifies distributed computing
Developer focus on problem

Implementations like Hadoop deal with messy details

» different approaches to facilitate Hadoop's infrastructure
> language- and use case dependent

vy VY Yy

Thank You for Your Attention!

Stefan TheuBI

Department of Statistics and Mathematics
email: Stefan.Theussl@wu.ac.at

URL: http://statmath.wu.ac.at/ " theussl

WU Vienna University of Economics and Business
Augasse 2-6, A-1090 Wien

	Problem & Motivation
	The MapReduce Paradigm
	Package hive
	Distributed Text Mining in R
	Discussion

