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Definitions

Stochastic Process

Time Series

A discrete time series is defined as an ordered sequence of
random numbers with respect to time. More formally, such a
stochastic process can be written as:

{y(s,t),s € 6, t %}, (1)

where for each t € T, y(-, t) is a random variable on the
sample space G and a realization of this stochastic process is
given by y(s,-) for each s € & with regard to a point in time
te®.
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Definitions

Stochastic Process — Examples

VVVVYVyV

logarithm of real gnp
5.

T T
1920 1940 1960 1080

Figure: U.S. GNP
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Ll Definitions

unemployment rate in percent

T T T
1920 1940 1960 1080

Figure: U.S. unemployment rate

1909, end = 1988, frequency = 1)

= 1909, end = 1988, frequency = 1)

library(urca)

data(npext)

y <- ts(na.omit(npext$realgnp), start

z <- ts(exp(na.omit (npext$unemploy)), start
plot(y, ylab = "logarithm of real gnp")
plot(z, ylab = "unemployment rate in percent")



Definitions
Stationarity

Weak Stationarity

The ameliorated form of a stationary process is termed weakly stationary and is defined as:

Ely] = p < o0, VE € T, (2a)
Ellye — w)(ye—j — )l =, Vt,j € T . (2b)
Because only the first two theoretical moments of the stochastic process have to be defined and being

constant, finite over time, this process is also referred to as being second-order stationary or covariance
stationary.

Strict Stationarity

The concept of a strictly stationary process is defined as:

F{ytsy2s o ovts ooy} = Fiags Yotjs o s Yetjo - - YT4j} s (3)

where F{-} is the joint distribution function and Vt,j € <.

Note:

Hence, if a process is strictly stationary with finite second moments, then it must be covariance
stationary as well. Although stochastic processes can be set up to be covariance stationary, it must not
be a strictly stationary process. It would be the case, for example, if the mean and autocovariances
would not be functions of time but of higher moments instead.

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff

Definitions



Analysis of

Deflnltlons Integrated and
Cointegrated Time

White Noise Series
Pfaff

Definitions

Definition

A white noise process is defined as:

E(er) =0, (42)
E(e2) = o2, (4b)
E(eter) =0 for t# 7. (4¢c)

When necessary, ; is assumed to be normally distributed: €; «~ A/(0, 0'2). If Equations 4a—4c are
amended by this assumption, then the process is said to be a normal- or Gaussian white noise process.
Furthermore, sometimes Equation 4c is replaced with the stronger assumption of independence. If this is
the case, then the process is said to be an independent white noise process. Please note that for
normally distributed random variables, uncorrelatedness and independence are equivalent. Otherwise,
independency is sufficient for uncorrelatedness but not vice versa.
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R code R Output T

Nonstationary Proces

> set.seed(12345) Statistical test
> gwn <- rnorm(100) Normal Q-0 Pl

> layout(matrix(1:4, ncol = 2, nrow = 2))

> plot.ts(gwn, xlab = "", ylab = "") ~7 3

> abline(h = 0, col = "red") o] H AF

> acf(gwn, main = "ACF") o *é .

> gqnorm(gwn) R A N S I N Cointegration
> pacf(gwn, main = "PACF") o 2 0 s @ w0 40 12 e

Theoretical Quanties

ACF PACF

06

Partil ACF

-0z 02




Definitions
Ergodicity

Definition
Ergodicity refers to one type of asymptotic independence. More formally, asymptotic independence can
be defined as

[Fiy, - yTs Yjrts -5 Yje1) — Fn oo s ym)F(jg1s - -5 yie 1) — 0 (5)

with j — oo. The joint distribution of two subsequences of a stochastic process {y; } is equal to the
product of the marginal distribution functions the more distant the two subsequences are from each
other. A stationary stochastic process is ergodic if

1 T
lim 7 S Elye — pllyess — 1l p =0, (6)

T
- j=1

holds. This equation would be satisfied if the autocovariances tend to zero with increasing j.

In prose:

Asymptotic independence means that two realizations of a time series become ever closer to
independence, the further they are apart with respect to time.
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Theorem

Any covariance stationary time series {y;} can be represented in
the form:

Representation / Models

Ye=p+ Y tiEe, £e ~ WN(0,0?) (7a)
j=0
do=1and » 7 < oo (7b)
j=0

Characteristics

@ Fixed mean: E[y;] = w

@ Finite variance: vy = 02 f.io %‘2 < 0.



Box-Jenkins

@ Autoregressive moving average models (ARMA)

@ Approximate Wold form of a stationary time series by a
parsimonious parametric model

@ ARMA(p,q) model:

Ye— 1= ¢1(Ye—1 — p) + oo+ Sp(Ye—p — 1)
tertOiec 1+ ...+ 0484 (8)
er ~ WN(0,0?)

@ Extension for integrated time series: ARIMA(p,d,q) model
class.

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff

Representation / Models



Box-Jenkins

Procedure

© ©6 00

If necessary, transform data, such that covariance stationarity
is achieved.

Inspect, ACF and PACF for initial guesses of p and gq.
Estimate proposed model.
Check residuals (diagnostic tests) and stationarity of process.

If item 4 fails, go to item 2 and repeat. If in doubt, choose
the more parsimonious model specification.
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Representation / Models

@ Package dsel: ARMA

@ Package fSeries: ArmaModelling

@ Package forecast: arima

@ Package mAr: mAr.eig, mAr.est, mAr.pca

@ Package stats: ar, arima, acf, pacf, ARMAacf, ARMAtoMA

@ Package tseries: arma
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R code R Output

> set.seed(12345)

> y.ex <- arima.sim(n = 500, Time series plot
+ list(ar = ¢c(0.9, -0.4))) Representation / Models
> layout(matrix(1:3, nrow = 3, ncol = 1)) 5

> plot(y.ex, xlab = "",

+ main = "Time series plot")

> abline(h = 0, col = "red")

> acf(y.ex, main = "ACF of y.ex") e
> pacf(y.ex, main = "PACF of y.ex") .

> arma20 <- arima(y.ex, order = c¢(2, 0, 0), ¢

+ include.mean = FALSE)

> result <- matrix(cbind(arma20$coef,

+ sqrt (diag (arma20$var.coef))),

+ nrow = 2) .

> rownames (result) <- c("ar1", "ar2") H

> colnames (result) <- c("estimate", "s.e.") -

R Output Figure: ARMA(2, 0) — simulated

estimate s.e.
arl 0.90 0.04
ar2 —0.39 0.04

Table: ARMA(2, 0) Estimates
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Nonstationary Processes

Many economic/financial time series exhibit trending
behaviour.

Task: determine most appropriate form of this trend.

Stationary time series: time invariants moments

In distinction: nonstationary processes have time
dependent moments (mostly mean and/or variance).
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Trend-Cycle Decomposition
Consider,

Nonstationary Processes

ye = TD: + Z;
TDt =031+ B2t
(L) Z: = (L)e; with e, ~ WN(0, 02) , with (9)
p(L)=1—¢1L — ... — ¢ppLP and
O(L) =1+ 01L+...+04L9

Assumptions:

@ ¢(z) = 0 has at most one root on the complex unit
circle.

@ 0(z) = 0 has all roots outside the unit circle.
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Definition

The series y; is trend stationary if the roots of ¢(z) = 0 are
outside the unit circle.

Nonstationary Processes

e ¢(L) is invertible.
@ Z; has the Wold representation:
Z: = ¢(L)7to(L
= AL o= 10

with (L) = ¢(L)710(L) = Y% L/ and o = 1 and
P(1) #0.
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R code R Output

> set.seed(12345) Representation / Models

Definitions

> y.tsar2 <- 5 + 0.5 * seq(250) + Nonstationary Processes
+ arima.sim(list(ar = c(0.8, -0.2)), n = 250) Statistical test
> plot(y.tsar2, ylab="", xlab = "")

120
L

> abline(a=5, b=0.5, col = "red")

100
L

VAR
SVAR

80

yisar2

q SVEC

T
0 50 100 150 200 250

Figure: Trend-stationary series
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Definition
The series y; is difference stationary if ¢(z) = 0 has one root
on the unit circle and the others are outside the unit circle.

Nonstationary Processes

@ O(L) can be factored as
(L) = (1 — L)¢*(L) whereby (11)

¢*(z) = 0 has all p— 1 roots outside the unit circle.

e AZ; is stationary and has an ARMA(p-1, q)
representation.

o If Z; is difference stationary, then Z; is integrated of
order one: Z; ~ I(1).

@ Recursive substitution yields: y; = yo + Z}:l uj.



Nonstationary Processes

Difference Stationary Time Series — Example

R code R Output

set.seed(12345)
u.ar2 <- arima.sim(
list(ar = c(0.8, -0.2)), n = 250)

1(1) process without drift

y1 <= cumsum(u.ar2)
TD <- 5.0 + 0.7 * seq(250)

0 40 80
L

layout (matrix(1:2, nrow = 2, ncol = 1)) f T T T T T

plot.ts(yl, main = "I(1) process without drift", ° 0 00 150 200 20
ylab="", xlab = "")

plot.ts(yl.d, main = "I(1) process with drift",
ylab="", xlab = "") 1(1) process with dift

>
>

+

>

>

> yl.d <- y1 + 1D
>

>

+

>

+

>

abline(a=5, b=0.7, col = "red")

0 100 200

Figure: Difference-stationary
series

Note:
If uy ~ IWN(0,2), then y; is a random walk.
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General Remarks
Consider, the following trend-cycle decomposition of a time
series yT: Statistica tess

TD:; signifies the deterministic trend, TS; is the stochastic
trend and C; is a stationary component.
@ Unit root tests: Hp : TS; # 0 vs. Hy : TS: =0, that is
ye ~ 1(1) vs. ye ~ 1(0).
@ Stationarity tests: Hy: TS; =0 vs. Hy : TS; # 0, that
is y¢ ~ 1(0) vs. yr ~ 1(0).
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Tests are based on the following framework:

.yt = d)Yt—l + ut )ut ~ /(0) (13) Statistical tests

e Hh:p=1 Hi: |9l <1

@ Tests: ADF- and PP-test.

@ ADF: Serial correlation in u; is captured by
autoregressive parametric structure of test.

@ PP: Non-parametric correction based on estimated
long-run variance of Ay;.



Autoregressive unit root tests
Augmented Dickey-Fuller Test, |

Test Regression

p
Ye = ﬁ/Dt + oyr—1 + ijAyt,j + U,

P
Ay, = 'Di + mye—1 + ijAyt,j +uwithm=¢—1

Test Statistic

j=t

=t

ADF, : ty_y =

ADFt : tﬂ—:() =

d—1

SE(¢
s

SE(m

)

i

(14)

(15)
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Autoregressive unit root tests
Augmented Dickey-Fuller Test, Il

R Resources

@ Function ur.df in package urca.

@ Function ADF .test in package uroot.

@ Function adf.test in package tseries.

@ Function urdfTest in package fSeries.

Literature

o Dickey, D. and W. Fuller, Distribution of the Estimators for Autoregressive Time Series with a
Unit Root, Journal of the American Statistical Society, 74 (1979), 427-341.

] Dickey, D. and W. Fuller, Likelihood Ratio Statistics for Autoregressive Time Series with a Unit
Root, Econometrica, 49, 1057-1072.

@ Fuller, W., Introduction to Statistical Time Series, 2nd Edition, 1996, New York: John Wiley.

@ MacKinnon, J., Numerical Distribution Functions for Unit Root and Cointegration Tests, Journal

of Applied Econometrics, 11 (1996), 601-618.
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Autoregressive unit root tests

Augmented Dickey-Fuller Test, Il

R code

> library(urca)

> yl.adf.nc.2 <- ur.df(y1,

+ type = "none", lags = 2)

> dyl.adf.nc.2 <- ur.df(diff(y1),
+ type = "none", lags = 1)

> plot(yl.adf.nc.2)

R Output
Statistic 1pct 5pct 10pct
1 0.85 —2.58 —1.95 —1.62
Ay —8.14 —2.58 —1.95 —1.62

Table: ADF-test results

Note:

R Output

Residuals

012

Autocorrelations of Residuals Partial Autocorrelations of Residuals

Partal ACF
-010 000 010
L

Figure: Residual plot of y1
ADF-regression

Use critical values of Dickey & Fuller, Fuller or MacKinnon.
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Test Regression

Ay, = Dy + mye—1 + ue , up ~ 1(0) (18)

Statistical tests

Test Statistic

52\? 1(32-32 T - SE(#)
Zt - <5\2> ° t‘n’:O - 5 3\2 : ( 6'2 ) ) (19)

T2.SE(7)
262

Z,=Th—

Xand & signify consistent estimates of the error variance.
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R Resources

@ Function ur.pp in package urca. Statitical tests

Function pp.test in package tseries.

@ Function urppTest in package fSeries.

Function PP.test in package stats.

Literature

o Phillips, P.C.B., Time Series Regression with a Unit Root, Econometrica, 55, 227-301.

@ Phillips, P.C.B. and P. Perron, Testing for Unit Roots in Time Series Regression, Biometrika, 75,
335-346.



Autoregressive unit root tests
Phillips & Perron Test, Ill

R code R Output

> library(urca)

> yl.pp.ts <= ur.pp(yl, type = "Z-tau", . [ ——

+ model = "trend", lags = "short") H

> dyl.pp.ts <- ur.pp(diff(y1), type = "Z-tau", /

+ model = "trend", lags = "short")

> plot(yl.pp.ts) . M B =

R Output
Statistic 1pct 5pct 10pct s
3 —2.04 —4.00 —3.43 —3.14 °
Ay —7.19  —400 —343 314 )

Table: PP-test results
Figure: Residual plot of y1
PP-regression

Note:
Same asymptotic distribution as ADF-Tests.
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Autoregressive unit root tests

Remarks

@ ADF and PP test are asymptotically equivalent.
@ PP has better small sample properties than ADF.

@ Both have low power against /(0) alternatives that are close
to being /(1) processes.

@ Power of the tests diminishes as deterministic terms are
added to the test regression.
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Efficient unit root tests
Elliot, Rothenberg & Stock, |

Model

Ve =de + ut

Up = auy_1 + vt

Test Statistics
@ Point optimal test:

S(a=3)—aS(a=1)
'DT: o2 )

@ DF-GLS test:

Ayf = ooyl + a1y 4.+ aPAytflfp tee

(23)

(24)
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Efficient unit root tests
Elliot, Rothenberg & Stock, Il

R Resources

@ Function ur.ers in package urca.

@ Function urersTest in package fSeries.

Literature

@ Elliot, G., T.J. Rothenberg and J.H. Stock, Efficient Tests for an Autoregressive Time Series
with a Unit Root, Econometrica, 64 (1996), 813-836.
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Efficient unit root tests
Elliot, Rothenberg & Stock, Il

R code

> library(urca)

> set.seed(12345)

> u.arl <- arima.sim(

+ list(ar = 0.99), n = 250)

TD <- 5.0 + 0.7 * seq(250)

y1.ni <- cumsum(u.ar1l) + TD

yl.ers <- ur.ers(yl.ni, type = "P-test",
model = "trend", lag = 1)

yl.adf <- ur.df(yl.ni, type = "trend")

vV + VvV VYV

R Output
Statistic Ipct 5pct 10pct
ERS 33.80 3.96 5.62 6.89
ADF —1.40 —3.99 —3.43 —3.13

Table: ERS / ADF-tests

R Output

1500
L

1000
L

0 50 100 150 200 250

Figure: Near /(1) process
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Unlt Root TeStS, Other Analysis of
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Schmidt & Phillips, |

Series

Pfaff

@ Problem of DF-type tests: nuisance parameters, i.e., the
coefficients of the deterministic regressors, are either
not defined or have a different interpretation under the
alternative hypothesis of stationarity.

Statistical tests

@ Solution: LM-type test, that has the same set of
nuisance parameters under both the null and alternative
hypothesis.

@ Higher polynomials than a linear trend are allowed.
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Unit Root Tests, other

Schmidt & Phillips, Il
Model
Vi =+ Z:6+ x; with X¢ = TXp—1 + &t (25)

Test Regression
Aye = AZyy + 651 + v (26) :
Test Statistics
p_T
20)= 15 = 2 (27)
,'7"_
Z(T)g=0 = =5 (28)



Unit Root Tests, other
Schmidt & Phillips, 111

R Resources

@ Function ur.sp in package urca.

@ Function urspTest in package fSeries.

Literature

@ Schmidt, P. and P.C.B. Phillips, LM Test for a Unit Root in the Presence of Deterministic
Trends, Oxford Bulletin of Economics and Statistics, 54(3) (1992), 257-287.

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff

Defini
Representatiof lodel:
lon ary Prc

Statistical tests



Unit Root Tests, other
Schmidt & Phillips, IV

R code R Output

set.seed(12345)
y1 <= cumsum(rnorm(250))
TD <- 5.0 + 0.7 * seq(250) + 0.1 » seq(250)"2

plot.ts(yl.d, xlab = "", ylab = "")
yl.d.sp <- ur.sp(yl.d, type = "tau",
pol.deg = 2, signif = 0.05)

>
>
>
> yl.d <- y1 + 1D
>
>
+

1000 2000 3000 4000 5000 6000

R Output ]

Statistic Ipct 5pct 10pct ° L T T T T T
Z(7) 253 .08 355 —3.28 L
Z(p) —12.70 —32.40 —24.80 —21.00

Table: S & P tests Figure: 1(1)-process with

polynomial trend
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Unit Root Tests, other
Zivot & Andrews, |

@ Problem: Difficult to statistically distinguish between an
I(1)-series from a stable /(0) that is contaminated by a
structrual shift.

@ If break point is known: Perron and Perron &
Vogelsang tests.

@ But risk of data mining if break point is exogenously
determined.

@ Solution: Endogenously determine potential break
point: Zivot & Andrews test.
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Statistical tests

Test Statistic
tai[Aine] = )lng tsi(A) for i=AB,C, (29)

A, B, C refer to models that allow for unknown breaks in the
intercept and/or trend. The test statistic is the Student t ratio
tsi(A) for i= A B, C.



Unit Root Tests, other
Zivot & Andrews, IlI

R Resources

@ Function ur.za in package urca.
@ Function urzaTest in package fSeries.
Literature

@ Zivot, E. and D.W.K. Andrews, Further Evidence on the Great Crash, the Oil-Price Shock, and
the Unit-Root Hypothesis, Journal of Business & Economic Statistics, 10(3) (1992), 251-270.

@ Perron, P., The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis, Econometrica,
57(6) (1989), 1361-1401.

@ Perron, P., Testing for a Unit Root in a Time Series With a Changing Mean, Journal of Business
& Economic Statistics, 8(2) (1990), 153-162.

@ Perron, P. and T.J. Vogelsang, Testing for a unit root in a time series with a changing mean:
corrections and extensions, Journal of Business & Economic Statistics, 10 (1992), 467-470.

@ Perron, P., Erratum: The Great Crash, the Oil Price Shock and the Unit Root Hypothesis,

Econometrica, 61(1) (1993), 248-249.
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Unit Root Tests, other
Zivot & Andrews, IV

R code

> set.seed(12345)

> u.ar2 <- arima.sim(list(ar = c(0.8, -0.2)),
+ n = 250)

> TD1 <- 5 + 0.3 * seq(100)

> TD2 <- 35 + 0.8 * seq(150)

> TD <- c(TD1, TD2)

> yl.break <- u.ar2 + TD

> plot.ts(yl.break, xlab = "", ylab = "")
> yl1.break.za <- ur.za(yl.break,

+ model = "trend", lag = 2)

> plot(yl.break.za)

> yl1.break.df <- ur.df(yl.break,

+ type = "trend", lags = 2)

R Output

Statistic Ipct 5pct 10pct
ZA —7.72 —4.93 —4.42 —4.11
ADF —1.80 —3.99 —3.43 —3.13

Table: Z & A and ADF tests

R Output

for lagged endogenous variable

Zivot and Andrews Unit Root Test

T T T
0 50 100 150 200 250

Time
Model type: trend

Figure: Plot of Statistic
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Stationarity Tests

KPSS, |
Model
ve = B'D + pr + ue , ue ~ 1(0)
Mt = [e—1 +E¢, E¢ ™~ WN(OaUZ)
Hypothesis

Ho: 02=0 and H;: 02>0

g

Test Statistic

_ T
IM = T 221‘:1 51.?
A2

(32)

(33)
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R Resources

@ Function ur.kpss in package urca. Statisical tests
@ Function urkpssTest in package fSeries.
@ Function kpss.test in package tseries.

@ Function KPSS.test and KPSS.rectest in package uroot.

Literature

@ Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin, Testing the Null Hypothesis of
Stationarity Against the Alternative of a Unit Root, Journal of Econometrics, 54 (1992),
159-178.



Stationarity Tests
KPSS, Il

R code

set.seed(12345)

u.ar2 <- arima.sim(list(ar = c(0.8, -0.2)),
n = 250)

TD1 <- 5 + 0.3 * seq(250)

TD2 <- rep(3, 250)

yl.tdl <- wu.ar2 + TD1

y1.td2 <- wu.ar2 + TD2

y2.rw <- cumsum(rnorm(250))

yltdl.kpss <- ur.kpss(yl.tdl, type = "tau")

yltd2.kpss <- ur.kpss(yl.td2, type = "mu")

y2rw.kpss <- ur.kpss(y2.rw, type = "mu")

VVVVVVVV+VYV

R Output

Statistic Ipct 5pct 10pct

1(0) trd. 0.05 0.12 0.15 0.22
1(0) const 0.30 0.35 0.46 0.74
1(1) 3.21 0.35 0.46 0.74

Table: KPSS tests

R Output

— 1(0) with trend
1(0) with const

— Random Walk

Figure: Generated Series
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Statistical tests



Multivariate Time Series

Overview

e Stationary VAR(p)-models

@ SVAR models

o Cointegration: Concept, models and methods
e SVEC models

Analysis of
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Cointegrated Time
Series

Pfaff

Multivariate Time
Series
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Definition Series

Pfaff

A VAR(p)-process is defined as:

ye =Aiye1+ ...+ Ath—p +CDy +uy (34)

A;: coefficient matrices for i =1,...,p

@ u;: K-dimensional white noise process with time invariant
positive definite covariance matrix E(u.u}) = X,,.

C: coefficient matrix of potentially deterministic regressors.

@ D;: column vector holding the appropriate deterministic
regressors.
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i Cointegrated Time
Companion Form Series

Pfaff

A VAR(p)-process as VAR(1):

& = A1+ v; , with (35)
Al A2 te Ap—l Ap u VAR
ye /I 0 -~ 0 0 Of
= i A= T 00 =
Ve pin S -
o o ... / 0 0

If the moduli of the eigenvalues of A are less than one, then the
VAR(p)-process is stable.
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Wold Decomposition Series

Pfaff

ye = Qour + Prue 1 + Poup 4 ..., (36)

with ®g = [k and the ®; matrices can be computed recursively
according to:

VAR

S
O, =) b, A for s=12... |, (37)
j=1

whereby ®g = Ix and A; =0 for j > p.



VAR

Empirical Lag Order Selection

AIC(p) = logdet(%,(p)) + % pK*

2 log(';g( 7)) pK?

SC(p) = log det(£,(p)) + —=3—

HQ(p) = logdet(X.(p)) +

T+p

p) det(S.(p) .

FPE(p )_<

(38a)
(38b)

(38¢)

(38d)

with ¥,(p) = 77! Z;l 0.0} and p* is the total number of the

parameters in each equation and p assigns the lag order.
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Pfaff
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Pfaff

Example of simulated VAR(2):
n _ 0.5 0.2 n + -0.3 -0.7 n + u
Yo " —-0.2 —-05 Y2 1 —0.1 0.3 Yo = ur ‘ VAR

@ Simulation of VAR-processes with packages dsel and mAr

@ Estimation of VAR-processes with packages dsel, mAr and
vars.



VAR

Simulation / Estimation, Il

R code

> library(dsel)

> library(vars)

> Apoly  <- array(c(1.0, -0.5, 0.3, 0,

+ 0.2, 0.1, 0, 0.2, 0.7, 1, 0.5, -0.3) ,
+ c(3, 2, 2))

> B <- diag(2)

> var2 <- ARMA(A = Apoly, B = B)

> varsim <- simulate(var2, sampleT = 500,

+ noise = list(w = matrix(rnorm(1000),

+ nrow = 500, ncol = 2)),

+ rng = list(seed = c(123456)))

> vardat <- matrix(varsim$output,

+ nrow = 500, ncol = 2)

> colnames(vardat) <- c("y1", "y2")

> infocrit <- VARselect(vardat, lag.max = 3,
+ type = "const")

> varsimest <- VAR(vardat, p = 2,

+ type = "none")

> roots <- roots(varsimest)

R Output

44 -2
L

2
L

-4 -2

T
100 200 300 400 500

°

Figure: Generated VAR(2)
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Pfaff

Estimate  Std. Error t value Pr(>]t])

ylI1 0.4954 0.0366 13.55 0.0000
y2.11 0.1466 0.0404 3.63 0.0003
yl.12 —0.2788 0.0364 —7.66 0.0000
y2.12 —0.7570 0.0455 —16.64 0.0000

Table: VAR result for y;

Estimate Std. Error t value Pr(>t])

yLI1 —0.2076 0.0375 —b5.54 0.0000
y2.11 —0.4899 0.0414 —11.83 0.0000
yl.12 —0.1144 0.0373 —3.07 0.0023
y2.12 0.3375 0.0467 7.23 0.0000

Table: VAR result for y»



VAR

Simulation / Estimation, Il

1 2 3
AIC(n 0.60 0.01 0.01
HQ(n 0.62 0.04 0.05

(n)
()
SC(n) 064 008 011
() 184 102  1.02

Table: Empirical Lag Selection

1 2 3 4

Eigen values 0.84 0.66 0.57 0.57

Table: Stability

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff
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. . . Cointegrated Time
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Pfaff
Statistical Tests

@ Serial correlation: Portmanteau Test, Breusch & Godfrey
@ Heteroskedasticity: ARCH
@ Normality: Jarque & Bera, Skewness, Kurtosis VAR

@ Structural Stability: EFP, CUSUM, CUSUM-of-Squares,
Fluctuation Test etc.

R Resources

@ Functions serial, arch, normality and stability in package vars.

@ Function checkResiduals in package dsel.



VAR Integrahd and

Cointegrated Time

Diagnostic testing, Il Series
Pfaff
R code R Output
> var2c.serial <- serial(varsimest)
> var2c.arch <- arch(varsimest) Statistic p-value
> var2c.norm <- normality(varsimest) PT y1 52.673 0.602
> plot(var2c.serial) PT y2 53.632 0.565
LMh 18.953 0.525
LMFh 0.938 0.538
ARCH y1 9.298 0.901
R Output ARCH y2 7480 0963
ARCH VAR 45.005 0.472 VAR
JByl 0.018 0.991
B y2 1354 0508
) 3 JB VAR 1.369 0.850
M 1% Kurtosis 0.029  0.986
i H Skewness 1.340 0.512

0 w0 20 W a0 s a2 a0 12 s

— Table: Diagnostic tests of VAR(2)

Figure: Residuals of y1



VAR

Diagnostic testing, 111

R code

> reccusum <- stability(varsimest,

+ type = "Rec-CUSUM")

> fluctuation <- stability(varsimest,
+ type = "fluctuation")

R Output

Empirical fluctuation process
0 1
L

Time

Figure: CUSUM Test y1

R Output

5

Empirical fluctuation process
o

00

Time

Figure: Fluctuation Test y2
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Granger-causality

P
Yit 11,0 Q12| | Y1,t—i ui:
— ; , N+ CDy + ; 39
[bj ’Z:; [a2l,i azz,:} L’z,t,} ‘ [Uzt} (39)

@ Null hypothesis: subvector y;; does not Granger-cause yy;, is
defined as ap;,; =0for i=1,2,...,p

@ Alternative hypothesis is: Japy; # 0 for i =1,2,...,p.

@ Statistic: F(pK1Kz, KT — n*), with n* equal to the total
number of parameters in the above VAR(p)-process,
including deterministic regressors.
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Causality, 1l Series

Pfaff

Instantaneous-causality

The null hypothesis for non-instantaneous causality is defined as:

Ho : Co =0, where Cis a (N x K(K + 1)/2) matrix of rank N
selecting the relevant co-variances of uy; and uy:; & = vech(iu). an
The Wald statistic is defined as:

Aw = T&' C'2CD5 (5, ® £,)DF C' 71 Co | (40)

hereby assigning the Moore-Penrose inverse of the duplication
matrix Dx with D} and ¥, = +3 10,0}, The test statistic Ay
is asymptotically distributed as x?(N).



Analysis of
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Causality, 111
Pfaff

R Resources

@ Function causality in package vars.

R Code

> var.causal <- causality(varsimest, cause = "y2")
Cointegration

R Output
Statistic p-value
Granger 254.53 0.00
Instant 0.00 0.96

Table: Causality tests
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Prediction, | Series

Pfaff
@ Recursive predictions according to:

YT = AyT + ..+ AT+ CDT1 (41)

@ Forecast error covariance matrix:

/ 0 0
YT+1 — Y7117 o / 0 VAR
Cov : = 0 (Zu®1h)
YT+h — YT 4hT ¢h'71 ® s |
[ 0 0]’
(O] / 0
: 0
[ Pr1 Pp2 /]

and the matrices ®; are the coefficient matrices of the Wold
moving average representation of a stable VAR(p)-process.
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R Resources °

@ Method predict in package vars for objects of class varest.

R Code

> predictions <- predict(varsimest, n.ahead = 25)
> plot(predictions)
> fanchart (predictions)

Fanchart for variable y2
Forecast of series y1

100 200 300 400 500

°

0 100 200 300 400 500



VAR

Impulse Response Function, |

Based on Wold decomposition of a stable VAR(p).

Investigate the dynamic interactions between the endogenous
variables.

The (i,j)th coefficients of the matrices ®; are thereby
interpreted as the expected response of variable y; ;s to a
unit change in variable yj;.

Can be cumulated through time s = 1,2, ...: cumulated
impact of a unit change in variable j to the variable i at time
s.

Orthogonalised impulse reponses: underlying shocks are less
likely to occur in isolation (derived from Choleski
Decomposition).

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff
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Pfaff

@ Orthogonalised impulse responses: ¥, = PP’ with P being a
lower triangular.

@ Transformed moving average representation:
Yt = WOEt + \Ulgtfl +... ) (42) VAR

with e, = P~ lu; and W; = ;P for i = 0,1,2,... and
Yy = P.

@ Confidence bands by bootstrapping.

R Resources

@ Methods irf, Phi and Psi in package vars.
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Impulse Response Function, Il Series

R Code Pfaff

irf.yl <- irf(varsimest, impulse = "y1", response = "y2", n.ahead = 10, ortho = FALSE,
cumulative = FALSE, boot = TRUE, seed = 12345)
irf.y2 <- irf(varsimest, impulse = "y2", response = "y1", n.ahead = 10, ortho = FALSE, Definitions
cumulative = FALSE, boot = TRUE, seed = 12345) Representatioy Aodel
plot(irf.y1) Nonstationary Proces
plot(irf.y2) Stati test

VV+V+Vv

Forecast Error Impulse Response from y1 to y2 Forecast Error Impulse Response from y2 to y1

0.00
L

-025 -020 -015 -010 -0.05

T T T T T
10

2 4 6 8
S s 8 o 95 % Bootstrap CI, 100 runs
95 % Bootstrap Cl, 100 runs

Figure: IRF of y1 Figure: IRF of y2
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@ FEVD: based on orthogonalised impulse response coefficient
matrices ¥V,

@ Analyse the contribution of variable j to the h-step forecast
error variance of variable k.

@ Elementwise squared orthogonalised impulse reponses are
divided by the variance of the forecast error variance, o2(h):

wkj(h) = (T/Jij,o ot ¢ij,h—1)/0i(h) . (43)

R Resources

@ Method fevd in package vars.
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R Code

> fevd.var2 <- fevd(varsimest, n.ahead = 10)
> plot(fevd.var2)

FEVD fory1 FEVD for y2

lley2 Iyl.y2

Horizon Horizon

10
10

08
08

Percentage
06
L
Percentage
06
L

04
L
04
L

02
02
L

00
00

Figure: FEVD of y1 Figure: IRF of y2



SVAR

Models, |

@ VAR can be viewed as a reduced form model.

@ SVAR is its structural form and is defined as:
Aye = Ajye 1+ ...+ Asye p+ Bee . (44)

@ Structural errors: ; are white noise.

o Coefficient matrices: A for i =1,...,p, are structural
coefficients that might differ from their reduced form
counterparts.

@ Use of SVAR: identify shocks and trace these out by IRF
and/or FEVD through imposing restrictions on the matrices
A and/or B.

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff

SVAR
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@ Reduced form residuals can be retrieved from a SVAR-model
by u; = A~!'Be; and its variance-covariance matrix by
Y,.=A"1BB'AT.

@ A model: B ist set to IK minimum number of restrictions for

(
identification is K(K —1)/2). svar
(

@ B model: A ist set to Ik (minimum number of restrictions for
identification is K(K — 1)/2).

@ AB model: restrictions can be placed on both matrices
(minimum number of restrictions for identification is
K%+ K(K —1)/2).
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Pfaff

@ Directly, by minimising the negative of the Log-Likelihood:

KT T T
In (A, B) = — —=In(27) + = In |A]> - = In |B|?
7 (45)

— Etr(A’B”lB’lA)fu) ,

@ Scoring algorithm proposed by Amisano and Giannini (1997). -,
@ Overidentification test:
LR = T(log det(%") — log det(%,)) (46)
with 3,: reduced form variance-covariance matrix and 3,:

restricted structural form estimation.

R Resources

@ Functions BQ, SVAR and SVAR?2 in package vars.
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The Model

10 07 p41 o 05 02 n +
—0.8 1.0] |y2f, [-02 —05] |y2], ,
-03 —-0.7 " + €1
—0.1 0.3 Y2l 5 €2],

Restrictions
Restrictions for A matrix in explicit form:

vec (A) =Ryva+ ra
1 0 0

21 _ 1 0 |:'Yl:| +
Q12 1 [
0

0
1 0

= O o~
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R Code R Output

> Apoly  <- array(

+ c(1.0, -0.5, 0.3, 0.8, yl y2

+ 0.2, 0.1, -0.7, -0.2, yl 1.00 0.75
+ 0.7, 1, 0.5, -0.3) , y2 —0.80 1.00
+ c(3, 2, 2)) -
> B <- diag(2) . H SVAR
> svarA <- ARMA(A = Apoly, B = B) Table: A matrix
> svarsim <- simulate(svarA,

+ sampleT = 500, rng = list(seed = c(123)))

> svardat <- matrix(svarsim$output,

+ nrow = 500, ncol = 2)

> colnames(svardat) <- c("y1", "y2") yl y2

> Ra <- matrix(c(0, 1, 0, 0, 0, 0, 1, 0), yl 0.00 0.05

+ nrow = 4, ncol = 2) y2 0.06 0.00

> ra <- c(diag(2))

> varest <- VAR(svardat, p = 2, type = "none") .

> Table: S.E. of A

svara <- SVAR2(varest, Ra = Ra, ra = ra)
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The Model

vi] [05 027w N
Y2 : —-0.2 -05 Y2 —1

-0.3 —-0.7 b4t + 1.0 0.0 €1
—-0.1 0.3 Yo o —-0.8 1.0 [90] ‘

SVAR

Restrictions
Restrictions for B matrix in explicit form:

vec (B) =Rpvyp + 1p

1 0 1
3 1 0
o | =1lo| I+ o
1 0 1
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R Code R Output

varest <- VAR(svardat, p = 2, type = "none")
svarb <- SVAR2(varest, Rb = Rb, rb = rb)

> Apoly  <- array(

+ c(1.0, -0.5, 0.3, 0, yl y2
+ 0.2, 0.1, 0.0, -0.2, yl 1.00 0.00
+ 0.7, 1.0, 0.5, -0.3) , y2 —0.84 1.00
+ c(3, 2, 2)) -
> B <- diag(2) . H SVAR
B2 1 o Table: B matrix
> svarB <- ARMA(A = Apoly, B = B)

> svarsim <- simulate(svarB, sampleT = 500,

+ rng = list(seed = c¢(123456)))

> svardat <- matrix(svarsim$output,

+ nrow = 500, ncol = 2) yl y2

> colnames(svardat) <- c("y1", "y2") yl 0.00 0.00

> Rb <- matrix(c(0, 1, 0, 0), y2 0.04 0.00

+ nrow = 4, ncol = 1)

> rb <- c(diag(2)) Table: S.E. of B
>

>



SVAR

Impulse Response Analysis, |

@ Impulse response coefficients for SVAR:
©;=d;A 1Bfori=1,...,n.

@ Orthogonalisation not meaningingful, hence not
implemented

R Resources

@ Method irf in package vars.

(47)
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Impulse Response Analysis, Il Series

R Code Pfaff

> irf.yl <- irf(svara, impulse = "yl1", response = "y2", n.ahead = 10,
+ cumulative = FALSE, boot FALSE, seed = 12345)

> irf.y2 <- irf(svara, impulse = "y2", response = "yl1", n.ahead = 10, Defini
+

>

>

cumulative = FALSE, boot = FALSE, seed = 12345) Representatiol lodel
plot(irf.y1)
plot(irf.y2) Stati t

SVAR Impulse Response from y1 to y2 SVAR Impulse Response from y2 to y1

04
I

4 A e INC N
) Ve

AL

2 a 6 8 10 2 4 6 8 10

00

-02
L

Figure: IRF of y1 Figure: IRF of y2



SVAR

Forecast Error Variance Decomposition, |

o Forecast errors of y1 7 are derived from the impulse
responses of SVAR and the derivation to the forecast
error variance decomposition is similar to the one
outlined for VARs.

R Resources

@ Method fevd in package vars.

Analysis of
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R Code

> fevd.svarb <- fevd(svarb, n.ahead = 10)
> plot(fevd.svarb)

FEVD fory1 FEVD for y2

lley? Iyl.y2

Horizon Horizon

SVAR

10
10

08
08

Percentage
06
L
Percentage
06
L

04
L
04
L

02
02
L

00
00

Figure: FEVD of y1 Figure: IRF of y2
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Problem

@ I(1) variables that are not cointegrated are regressed on each
other.

@ Slope coefficients do not converge in probability to zero.

@ t-statistics diverge to +o00 as T — oo.

Cointegration

@ R? tends to unity with T — oo.

@ Rule-of-thumb: Be cautious when R? is greater than DW
statistic.

Literature

@ Phillips, P.C.B., Understanding Spurious Regression in Econometrics, Journal of Econometrics,
33 (1986), 311-340.
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R Code R Output

> library(lmtest) Representation / Models
> set.seed(54321) sy Fieessss
> el <- rnorm(500) 1(4) not cointegrated Statistical test:

> e2 <- rnorm(500)
> y1 <- cumsum(el)
>

>

>

>

y2 <- cumsum(e2)

sr.regl <- Im(yl ~ y2)

sr.dw <- dwtest(sr.regl)

sr.reg2 <- 1m(diff(y1) ~ diff(y2))

Cointegration

-20
L

SVEC

-30

-a0
L

T T
0 100 200 300 400 500

Figure: Spurious relation



Cointegration

Spurious Regression, Il

R Output
Estimate Std. Error t value Pr(>t])
(Intercept) —1.9532 0.3696 —5.28 0.0000
y2 0.1427 0.0165 8.63 0.0000

Table: Level regression

For the level regresion the R? is 0.13 and the DW statistic is
0.051.

Estimate Std. Error t value Pr(>[t])
(Intercept) —0.0434 0.0456 —0.95 0.3413
diff(y2) —0.0588 0.0453 —1.30 0.1942

Table: Difference regression

Analysis of
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Pfaff
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Definition

The components of the vector y; are said to be cointegrated of
order d, b, denoted y; ~ Cl(d, b), if (a) all components of y; are
I(d); and (b) a vector 3(# 0) exists so that

zy = B'yr ~ I(d — b), b > 0. The vector (3 is called the
cointegrating vector.

Cointegration

Common Trends

If the (n x 1) vector y; is cointegrated with 0 < r < n
cointegrating vectors, then there are n — r common /(1)
stochastic trends.

Literature

@ Engle, R.F. and C.W.J. Granger, Co-Integration and Error Correction: Representation,
Estimation and Testing, Econometrica, 55 (1987), 251-276.



Cointegration
Definition, 1l

R Code

set.seed(12345)

el <- rnorm(250, mean = 0, sd = 0.5)

e2 <- rnorm(250, mean = 0, sd = 0.5)

u.ar3 <- arima.sim(model =
list(ar = c(0.6, -0.2, 0.1)), n = 250,
innov = el)

y2 <= cumsum(e2)

y1 < u.ar3 + 0.5%y2

ymax <- max(c(y1, y2))

ymin <- min(c(y1, y2))

layout (matrix(1:2, nrow = 2, ncol = 1))

plot(yl, xlab = "", ylab = "", ylim =
c(ymin, ymax), main =
"Cointegrated System")

lines(y2, col = "green")

plot(u.ar3, ylab = "", xlab = "", main =
"Cointegrating Residuals")

abline(h = 0, col = "red")

V+VV+++VVVVVV++VYVVYV

R Output

Cointegrated System

15

-15 00

Figure: Bivariate Cointegration
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Definition

Bivariate /(1) vector y; = (y1s, y2t)’ with cointegrating vector

B =(1,—p2), hence 8'y; = yar — Bayar ~ 1(0), then an ECM

exists in the form of:

K
Ay =01 +7(1,e-1 — Boyoe—1) + Zwl,iﬂh,t—i
i—1
L Cointegration
+ Z Vo, iAyae—i + e,
i=1
K
Ayor =00+ v(y1,e-1 — Boyo,e—1)e—1 + Zgl,iA}/l,tfi
-1

L
+ Z §2,iAyae—i + €2t -
i=1



Cointegration
Engle & Granger Two-Step Procedure, |

@ Estimate long-run relationship, i.e., regression in levels and
test residuals for /(0).

@ Take residuals from first step and use it in ECM regression.

@ Warschau: If ADF-test is used, you need CV provided in
Engle & Yoo.

@ OLS-estimator is super consistent, convergence T.

@ However, OLS can be biased in small samples!

Literature

@ Engle, R. and B. Yoo, Forecasting and Testing in Co-Integrated Systems, Journal of
Econometrics, 35 (1987), 143-159.
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R Code

> library(dynlm)

> 1r <- 1m(y1 ~ y2)

> ect <- resid(lr)[1:249]

> dyl <- diff(y1)

> dy2 <- diff(y2)

> ecmdat <- cbind(dyl, dy2, ect)

> ecm <- dynlm(dyl ~ L(ect, 1) + L(dy1, 1)
+ + L(dy2, 1) , data = ecmdat)

R Output Cinagato

Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 0.0064 0.0376 0.17  0.8646
L(ect, 1) —0.6216 0.0725 —8.58  0.0000
L(dyl, 1) —0.4235 0.0703 —6.03  0.0000
L(dy2, 1) 03171 00911 348  0.0006

Table: Results for ECM
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Phillips & Ouliaris, | Series

Pfaff

@ Residual-based tests: Variance Ratio Test & Trace Statistic.

@ Based on regression:
zp =Mz, + &, (48)  n

where z; is partioned as z; = (y;, x}) with a dimension of x;
equal to (m=n+1).

@ Null hypothesis: Not cointegrated.
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R Resources

@ Function ca.po in package urca.

@ Function po.test in package tseries.

Cointegration

Literature

@ Phillips, P.C.B. and S. Ouliaris, S., Asymptotic Properties of Residual Based Tests for
Cointegration, Econometrica, 58 (1) (1990), 165-193.



Analysis of
Integrated and

Cointegration
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Phillips & Ouliaris, Il Series
Pfaff

R Code crin /o

> z <- cbind(y1, y2)
> po.Pu <- ca.po(z, demean
> po.Pz <- ca.po(z, demean

npyn)
npzm)

"none", type
"none", type

Cointegration

R Output ‘

Statistic 10pct 5pct 1pct
Pu 167.44 20.39 25.97 38.34
Pz 176.09 33.93 40.82 55.19

Table: Test Statistics



VECM

Definition

o VAR:

Ye = Aryi1+ ...+ Apyi—p + CD: +uy

@ Transitory form of VECM:
Ay =T1Aye 1+ ...+ Tk_1Aye pr1 +Mye1 + CD; + &,

Mi=—(Ap+...+A), fori=1,...,p—1,
M=—(—-A—--—A,).

@ Long-run form of VECM:

Ay =T1Aye 1+ T 1Ay prr + My p + CD; + &1,
r,':—(/—Al—...—A,'),'FOFI':].,...,p—].7
ﬂ:f(/fAlf-Hpr)

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff

Cointegration



Analysis of
V E C M Integrated and
. Cointegrated Time
The I matrix Series

Pfaff

@ k(M) = n, all n combinations must be stationary for
balancing: y; must be stationary around deterministic
components; standard VAR-model in levels.

@ k(M) =0, no linear combination exists, such that My;_; is
stationary, except the trivial solution; VAR-model in first
differences.

Cointegration

© 0 < rk(M) =0 < r < n, interesting case: M = af’ with
dimensions (n x r) and 8'y;_1 is stationary. Each column of
[ represents one long-run relationship.



VECM

Example

R Code

set.seed(12345)

el <- rnorm(250, 0, 0.5)
e2 <- rnorm(250, 0, 0.5)
e3 <- rnorm(250, 0, 0.5)

ul.arl <- arima.sim(model = list(ar=0.75),

>

>

>

>

>

+ innov = el, n = 250)

> u2.arl <- arima.sim(model = list(ar=0.3),
+ innov = e2, n = 250)

> y3 <~ cumsum(e3)

>yl <- 0.8 * y3 + ul.arl

> y2 <- -0.3 * y3 + u2.arl

> ymax <- max(c(y1, y2, y3))

> ymin <- min(c(y1, y2, y3))

> plot(yl, ylab = "", xlab = "",
+ ylim = c(ymin, ymax))

> lines(y2, col = "red")

> lines(y3, col = "blue")

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff

R Output

Nonstationary Process

Statistical test

VAF
AR
Cointegration

SVE(

T
0 50 100 150 200 250

Figure: Simulated VECM
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@ Based on canonical correlations between y; and Ay, with
lagged differences.

@ Correlations:
1 T T 1T
_ = A AS — — A AS _ = A Af
So0= 7 2 8l S =St =) 8%, Su=7) W
t=1 t=1 =
@ Eigenvalues:

IAS11 — S10S40" So1| = 0
@ LR-tests: Eigen- and Trace-test.
Nested Hypothesis: H(0) C --- C H(r) C --- C H(n).
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V E C M Integrated and
Cointegrated Time

Resources Series
Pfaff

R Resources

@ Functions ca.jo, cajorls, cajools, cajolst in package urca.

@ Hypothesis Testing: alrtest, ablrtest, blrtest, bh5Irtest,
bhb6lrtest and lttest in package urca.

@ Function vec2var in package vars.

Cointegration

Literature

@ Johansen, S., Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and
Control, 12 (1988), 231-254.

@ Johansen, S. and K. Juselius, Maximum Likelihood Estimation and Inference on Cointegration -
with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics, 52(2)
(1990), 169-210.

@ Johansen, S., Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector
Autoregressive Models, Econometrica, 59(6) (1991), 1551-1580.



VECM

Estimation, |

R Code

> y.mat <- data.frame(yl, y2, y3)
> vecml <- ca.jo(y.mat, type = "eigen", spec = "transitory")
> vecm2 <- ca.jo(y.mat, type = "trace", spec = "transitory")
> vecm.r2 <- cajorls(vecml, r = 2)

R Output

Statistic 10pct 5pct 1pct

r<=2] 772 282 306 604
r<=1| 41690 1210 1404  17.94
r=0]| 7817 1870 2078 2552

Table: Maximal Eigenvalue Test

Statistic 10pct 5pct 1pct

r<=2| 4.72 2.82 3.96 6.94
r<=1]| 46.41 13.34 15.20 19.31
r=20| 124.58 26.79 29.51 35.40

Table: Trace Test

Analysis of
Integrated and

Cointegrated Time

Series

Pfaff

Cointegration



VECM Integrahd and

Cointegrated Time

Estimation, Il Series
Pfaff
R Output
yld y2.d y3.d
ectl —0.33 0.06 0.01
ect2 0.09 —0.71 —0.01
constant 0.17 —0.03 0.03
yl.dil 010 —0.04 0.06
y2.dil 005  —0.01 0.05
y3.di1 —0.15 —0.03 —0.06
. Cointegration
Table: VECM with r =2
ectl ect2
yilL 100 0.0
y2.11 0.00  1.00
y311  —073  0.30

Table: Normalised Cl-relations
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V E C M Integrated and
Cointegrated Time

Prediction, IRF, FEVD, | Series
Pfaff

@ Convert restricted VECM to level-VAR.

@ Prediction, IRF, FEVD and diagnostic checking applies
likewise to stationary VAR(p)-models as shown in previous
slides.

Cointegration

R Resources

@ Function vec2var in package vars.
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V E C M Integrated and

Lo Cointegrated Time
Prediction, IRF, FEVD, Il Series
Pfaff

R Code R Output

> vecm.level <- vec2var(vecml, r = 2)

> vecm.pred <- predict(vecm.level, yl.I1 y2.11 y3.11

+ n.ahead = 10) yl 0.77 0.14 0.12

> fanchart (vecm.pred) y2 0.03 0.28 —0.29

> vecm.irf <- irf(vecm.level, impulse = 'y3', y3 0.07 0.04 0.92

+ response = 'y1', boot = FALSE)

> vecm.fevd <- fevd(vecm.level) . H

> vecm.norm <- normality(vecm.level) Table: lmplled Al

> vecm.arch <- arch(vecm.level)

> vecm.serial <- serial(vecm.level) CaliE et

Vi R 3R

R Output vi  —010 —005 015

y2 004 001 003

y3  —006 —005 _ 0.06
_constant_

T 017 ,

y2 —0.03 Table: Implied A,

oo

Table: Implied Constant



VECM

Prediction, IRF, FEVD, Il

R Output

Forecast of series y1

T T
0 50 100 150 200 250

Figure: Prediction of y;

R Output

Fanchart for variable y2

T T T T T T
0 50 100 150 200 250

Figure: Fanchart of y»
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VECM

Prediction, IRF, FEVD, IV

R Output

Orthogonal Impulse Response from y3 to y1

010 015 020 025
L L L L

005
L

000
L

Figure: IRF of y3 to y1

R Output

Percentage

FEVD for y1

12 3 4 5 6 7 8 9 10

Horizon

10

08
L

06
L

04
L

02

00

Figure: FEVD of VECM

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff

Cointegration



Analysis of
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Linear Trend Test, | Series

Pfaff

@ Test if linear trend in VAR is existent.

@ This corresponds to the inclusion of a constant in the error
correction term.

@ Statistic is distributed as x? square with (K — r) degrees of
freedom.

Cointegration

R Resources

@ Function Ittest in package urca.



VECM

Linear Trend Test, Il

R Code

V++VVVV++V+VYV

data (denmark)
sjd <- as.matrix(denmark[,
c("LRM", "LRY", "IBO", "IDE")])
sjd.vecm <- ca.jo(sjd, constant = TRUE,
type = "eigen", K = 2, spec="longrun",
season=4)
1ttest.1 <- lttest(sjd.vecm, r=1)
data(finland)
sjf <- as.matrix(finland)
sjf.vecm <- ca.jo(sjf, constant = FALSE,
type = "eigen", K=2, spec="longrun",
season=4)
Ittest.2 <- lttest(sjf.vecm, r=3)

R Output

Statistic p-value
Denmark 1.98 0.58
Finland 4.78 0.03

Table: Linear Trend Test

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff

Cointegration
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V E C M Integrated and
L ) Cointegrated Time
Restrictions on Loadings, | Series

Pfaff

@ Testing exogenity, i.e., certain variables do not enter into the
cointegration relation(s).

@ Likelihood ratio test for the hypothesis:
H4 ta= AV 5 (49)

Cointegration

with (r(K — m)) degrees of freedom.

R Resources

@ Function alrtest in package urca.



VECM

Restrictions on Loadings, Il

R Code

>
>
>
>
>
+
>
+
+
+
>
+
+
+
>
+
>
+

data (UKpppuip)
attach (UKpppuip)
datl <- cbind(pl, p2, el2, il, i2)
dat2 <- cbind(doilp0, doilpl)
H1 <- ca.jo(datl, K = 2, season = 4,
dumvar=dat2)
Al <- matrix(c(1,0,0,0,0,
0,0,1,0,0,
0,0,0,1,0,
0,0,0,0,1), nrow=5, ncol=4)
A2 <- matrix(c(1,0,0,0,0,
0,1,0,0,0,
0,0,1,0,0,
0,0,0,1,0), nrow=5, ncol=4)
H41 <- summary(alrtest(z = H1,
A =41, r=2)
H42 <- summary(alrtest(z = H1,
A =42, r=2))

R Output

Statistic p-value
Exog. p2 0.66 0.72
Exog. i2 4.38 0.11

Table: Testing Exogenity

Analysis of
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Cointegrated Time
Series

Pfaff

Cointegration



V E C M Analysis of

Integrated and

.. . Cointegrated Time
Restrictions on Cl-Relations, | Series

Pfaff

@ Tests do not depend on normalization of (.

@ Tests are Likelihood ratio tests, similar for testing restrictions
on a.

© Testing restrictions for all cointegration relations. Cointegration

© r; cointegrating relations are assumed to be known and r,
cointegarting relations have to be estimated, r =, + r>.

© n cointegrating relations are estimated with restrictions and
r, cointegrating relations are estimated without constraints,
r=n-—+n.
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V E C M Integrated and
Cointegrated Time

Restrictions on Cl-Relations, Il Series
Pfaff

@ Following previous example: Test purchasing power parity
and interest rate differential contained in all Cl relations.

@ Hypothesis: H3 : 8 = H3p with H3(K X s), ¢(s x r) and
r <s < K: sp(3) C sp(Hs).

@ Functions blrtest and ablrtest in package urca.

Cointegration

Literature

@ Johansen, S. and K. Juselius, Testing structural hypothesis in a multivariate cointegration
analysis of the PPP and the UIP for UK, Journal of Econometrics, 53 (1992), 211-244.

@ Johansen, S., Statistical Analysis of Cointegration Vectors, Journal of Economic Dynamics and
Control, 12 (1988), 231-254.

@ Johansen, S. and K. Juselius, Maximum Likelihood Estimation and Inference on Cointegration -
with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics, 52(2)
(1990), 169-210.

@ Johansen, S., Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector
Autoregressive Models, Econometrica, 59(6) (1991), 1551-1580.



VECM

Restrictions on Cl-Relations, 1l

R Code

> H.31 <- matrix(c(1,-1,-1,0,0,

+ 0,0,0,1,0,

+ 0,0,0,0,1), ¢(5,3))

> H.32 <- matrix(c(1,0,0,0,0,

+ 0,1,0,0,0,

+ 0,0,1,0,0,

+ 0,0,0,1,-1), <c(5,4))

> H31 <- blrtest(z = H1, =H31, r=2)

> H32 <- blrtest(z = H1, H=H.32, r = 2)

R Output

Statistic p-value
All CI: PPP 2.76 0.60
All CI: ID 13.71 0.00

Table: Hz - Tests

@ PPP in all Cl relations: Cannot be rejected.

@ D in all Cl relations: Must be rejected.

Analysis of
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Pfaff

Cointegration

SVE(



VECM

Restrictions on Cl-Relations, IV

Following previous example: Test purchasing power parity
and interest rate differential directly, i.e. (1,—1,—1,0,0) and
(0,0,0,1,-1).

In contrast to previous hypothesis H3, which tested:

(ai, —aj, —aj, *,*) and (*,%,%, bj, —b;) for i =1,...,r.
Hypothesis: Hs : 8 = (Hs, V) with Hs(K x 1), V(K X ),
r=nr+r: sp(Hs) C sp(B).

Function bhblrtest in package urca.

Analysis of
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Cointegrated Time
Series

Pfaff

Cointegration



Analysis of

V E C M Integrated and

Cointegrated Time

Restrictions on Cl-Relations, V Series

Pfaff

R Code R Output

> H.51 <- ¢(1, -1, -1, 0, 0)

> H.52 <- ¢(0, 0, 0, 1, -1) Statistic p-value
> H51 <- bhb5lrtest(z = H1, H = H.61, r = 2) Exact PPP 14.52 0.00
> H52 <- bh5lrtest(z = Hi, H = H.52, r = 2) Exact ID 1.89 0.59

Table: Hs - Tests

Cointegration

@ Reject stationarity of
PPP.

o Cannot reject stationarity
for ID.
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Restrictions on Cl-Relations, VI Series

Pfaff

@ Following previous example: Strict PPP not stationary; now
test if general Cl-relation (a, b, ¢, 0, 0) exist.

@ In contrast to previous hypothesis Hs, which tested:
(13 717 713 07 0) Cointegration

@ He : 5= (Hsp, V) with Hs(K x s), p(s x r), W(K x r),
n<s<K,r=n+r: dim(sp(8)Nsp(Hs)) > n.

@ Function bh6lrtest in package urca.



VECM

Restrictions on Cl-Relations, VII

R Code

> H.6 <- matrix(rbind(diag(3),

+ c(0, 0, 0),

+ c(0, 0, 0)), nrow=5, ncol=3)
> H6 <- bh6lrtest(z = Hi1, =H.6,
+ r=2,r1=1)

R Output

Statistic p-value

General PPP 4.93 0.03

Table: Hg - Tests

@ Statistic insignificant at 1pct level.
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Definition, | Series

Pfaff

@ Variables are at most /(1) and DGP is a VECM:
Ay =af'ye 1 +T1Ayr 1+ +Tp 1Ay pia + ur (50)
fort=1,..., T.
@ SVECM is a B-model with u; = Be; and X, = BB'.

@ For unique identification of B, K (K — 1) at least sve
restrictions are required.

@ Granger's representation theorem:

t o]
e=Z> ui+Y Zjuj+y (51)
i=1 j=0



Analysis of
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Cointegrated Time

Definition, 1l Series
Pfaff

— t —_
@ =), u;j are the common trends; rank of = is K — r.

@ Matrix = has the form:

p—1 -1

Z=00 ) [ Ik=D_Ti|BL| o) (52)
i1

@ Substitution yields: =Y, u; = =B e

@ Hence, long-run effects of structural innovations are given by
=B.

@ At most r innovations can have transitory effects and at least
K — r have permanent effects.
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SV EC Integrated and
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Resources Series

Pfaff

R Resources

@ Function SVEC in package vars.
@ Methods irf and fevd in package vars.
@ Method plot for irf and fevd in package vars.

SVEC

Literature

@ King, R., C. Plosser, J. Stock and M. Watson, Stochastic Trends and economic fluctuations,
American Economic Review 81 (1991), 819-840.

@ Liitkepohl, H. and M. Kratzig, Applied Time Series Econometrics, 2004, Cambridge.
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Pfaff

R Code R Output

> library(vars)

> data(Canada) e prod rw U

> vec.can <- ca.jo(Canada, K = 2, e 0.05 —0.22 0.06 —0.26

* spec = "transitory", season = 4) prod —0.52 0.19 —0.12 —0.23

> LR <- matrix(0, nrow = 4, ncol = 4) rw —0.08 0.37 0.56 0.00

> LR[, c(1, 2)] <- NA U —0.13 0.00 0.04 0.22

> SR <- matrix(NA, nrow = 4, ncol = 4)

s D Table: Impact Matrix B

> svecm <- SVEC(vec.can, r = 2, LR = LR, SVEC

+ SR = SR, max.iter = 200,

+ 1lrtest = TRUE, boot = FALSE)

> svecm.irf <- irf(svecm, impulse = "e",

+ response = "rw", boot = FALSE, e prod w U

+ cumulative = FALSE, runs = 100) e —0.41 —0.47 0.00 0.00

> svecm.fevd <- fevd(svecm) prod —0.51 0.63 0.00 0.00
rw —0.67 —0.66 0.00 0.00
U 0.09 0.05 0.00 0.00

Table: Long-run Matrix =B



SVEC

IRF and FEVD

R Output

000 005 010 015

005

SVECM Impulse Response from e to rw

Figure: IRF of e to rw

R Output

Percentage
02 04 06 08 10

00

FEVD for U

Imnﬂ.rw =y

Analysis of
Integrated and
Cointegrated Time
Series

Pfaff

|||||||||| :

Horizon

Figure: FEVD of U
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Pfaff

o Near-integrated processes (see packages: longmemo,
fracdiff and fSeries).
@ Seasonal unit roots (see package uroot).

@ Bayesian VAR models (see package MSBVAR).

Topics left out
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Cited R packages
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Name Title Version
dsel Dynamic Systems Estimation (time series package) 2006.10-1
dynlm Dynamic Linear Regression 0.1-2
fBasics Rmetrics - Markets and Basic Statistics 240.10068.1
fracdiff Fractionally differenced ARIMA aka ARFIMA(p,d,q) models 1.3-1
fSeries Rmetrics - The Dynamical Process Behind Markets 240.10068
Imtest Testing Linear Regression Models 0.9-19
longmemo Statistics for Long-Memory Processes (Jan Beran) — Data 0.9-4
and Functions
mAr Multivariate AutoRegressive analysis 1.1-1
MSBVAR Bayesian Vector Autoregression Models 0.2.2
tseries Time series analysis and computational finance 0.10-11
vars VAR Modelling 0.7-9
urca Unit root and cointegration tests for time series data 1.1-5
uroot Unit Root Tests and Graphics for Seasonal Time Series 1.4
R packages

Table: Overview of cited R packages
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