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CHAPTER1
Introduction

This book is about using linear programming to help making better de-

cisions in the organizational context. Linear programming is one of the

most useful and extensively used techniques of operational research.

It is one special case of mathematical optimization, where the func-

tion to optimize and the constraints are linear functions of the decision

variables. Posterior developments of linear programming include the

possibility of defining some decision variables as integer, widening the

range of problems solvable by linear programming considerably.

This is the first of a series of books that act as a support of a pedagog-

ical program based on teaching operational research techniques with

R. R [6] is a programming language and software environment for sta-

tistical computing and graphics. The R language is widely used among

statisticians and data miners for developing statistical software and data

analysis. It is an open source programming environment, that runs in

most operating systems. The strength of R comes from the large num-

5



ber of libraries developed by a lively community of software developers.

Within the context of this teaching program, the objective of this book

is twofold. On the one side, our aim is to present a pragmatic intro-

duction to linear programming, presenting through practical examples

the possibilities of modeling through linear programming situations of

decision making in the organizational context. On the other side, some

libraries to solve linear programming models are presented, such as

Rglpk [7], lpSolve [1] and Rsymphony [3].

To achieve these aims, the book is organized as follows. In 2.6.2 are

developed the basics of linear programming: an introduction of formu-

lation of linear models, an introduction to the features of the optimum

of a linear program, including duality analysis, and to the formulation

and solution of linear programs including integer variables. The chap-

ter concludes with an introduction to the use of linear programming

solvers in R.

chapter 3 includes ten optimization problems solvable by linear pro-

gramming. Each of the problems is presented with the following struc-

ture: after presenting the problem, a solution through linear program-

ming is offered. Then we show how to solve the problem in R. There

are several ways to parse a problem into a R solver. In this collection of

problems, we show how to use a standard linear programming syntax,

such as CPLEX, and how to enter the model using the R syntax.

We have chosen to use online resources to keep this book updated.

In http://bit.ly/1zkJpVw we are keeping a list of linear programming

solvers, together with its implementation in R. We encourage readers to

send us a comment if they find the information incomplete or not up-

dated. All the source code used in this book is stored and updated in the
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https://github.com/jmsallan/linearprogramming GitHub repository.

We hope that this book becomes a valuable resource to everybody in-

terested in a hands-on introduction to linear programming, that helps

to reduce the steep of the learning curve to implement code including

resolution of linear programming models.
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CHAPTER2
Solving linear programming

2.1 An introduction to linear programming

Linear programming is one of the most extensively used techniques in

the toolbox of quantitative methods of optimization. Its origins date

as early as 1937, when Leonid Kantorovich published his paper A new

method of solving some classes of extremal problems. Kantorovich devel-

oped linear programming as a technique for planning expenditures and

returns in order to optimize costs to the army and increase losses to

the enemy. The method was kept secret until 1947, when George B.

Dantzig published the simplex method for solving linear programming

[2]. In this same year, John von Neumann developed the theory of

duality in the context of mathematical analysis of game theory.

One of the reasons for the popularity of linear programming is that it

allows to model a large variety of situations with a simple framework.
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Furthermore, a linear program is relatively easy to solve. The simplex

method allows to solve most linear programs efficiently, and the Kar-

markar interior-point methods allows a more efficient solving of some

kinds of linear programming.

The power of linear programming was greatly enhanced when came the

opportunity of solving integer and mixed integer linear programming.

In these models all or some of the decision variables are integer, re-

spectively. This field was opened by the introduction of the branch and

bound method by Land and Doig. Later other algorithms have appear,

like the cutting plane method. These techniques, and the extension of

computing availability, have increased largely the possibilities of linear

programming.

In this chapter we will provide a brief introduction to linear program-

ming, together with some simple formulations. We will also provide

an introduction to free software to solve linear programming in R, in

particular the R implementations of lp_solve and GLPK through the li-

braries lpSolve, Rglpk and Rsymphony, among others. chapter 3 intro-

duces some applications of linear programming, through a collection of

solved linear programming problems. For each problem a posible solu-

tion through linear programming is introduced, together with the code

to solve it with a computer and its numerical solution.
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2.2 Linear programming formulation

2.2.1 The structure of a linear program model

Roughly speaking, the linear programming problem consists in optimiz-

ing (that is, either minimize or maximize) the value of a linear objective

function of a vector of decision variables, considering that the variables

can only take the values defined by a set of linear constraints. Linear

programming is a case of mathematical programming, where objective

function and constraints are linear.

A formulation of a linear program in its canonical form of maximum is:

MAX z = c1x1 + c2x2 + · · ·+ cnxn

s. t. a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

. . .

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

xi ≥ 0

The model has the following elements:

• An objective function of the n decision variables xj . Decision vari-

ables are affected by the cost coefficients cj

• A set of m constraints, in which a linear combination of the vari-

ables affected by coefficients aij has to be less or equal than its

right hand side value bi (constraints with signs greater or equal or

equalities are also possible)
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• The bounds of the decision variables. In this case, all decision

variables have to be nonnegative.

The constraints of the LP define the feasible region, which is the set of

values that satisfy all constants. For a LP of n variables, the feasible

region is a n-dimensional convex polytope. For instance, for n = 2 the

feasible region is a convex polygon.

The LP formulation shown above can be expressed in matrix form as

follows (cap bold letters are matrices and cap small bold letters are

column vectors):

MAX z = c′x

s. t. Ax ≤ b

x ≥ 0

Using the same matrix syntax, we can write the canonical form of mini-

mum of a linear program as:

MIN z = c′x

s. t. Ax ≥ b

x ≥ 0

Another usual way to express a linear program is the standard form.

This form is required to apply the simplex method to solve a linear

program. Here we have used OPT to express that this form can be

defined for maximum or minimum models.

OPT z = c′x

s. t. Ax = b

x ≥ 0
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An additional condition to use the simplex method is that righthand

side values b ≥ 0. All other parameters are not restricted in sign.

2.2.2 A simple example of a PL model

Let’s consider the following situation:

A small business sells two products, named Product 1 and Product 2.

Each tonne of Product 1 consumes 30 working hours, and each tonne of

Product 2 consumes 20 working hours. The business has a maximum of

2,700 working hours for the period considered. As for machine hours,

each tonne of Products 1 and 2 consumes 5 and 10 machine hours,

respectively. There are 850 machine hours available.

Each tonne of Product 1 yields 20 Me of profit, while Product 2 yields

60 Me for each tonne sold. For technical reasons, the firm must pro-

duce a minimum of 95 tonnes in total between both products. We need

to know how many tonnes of Product 1 and 2 must be produced to

maximize total profit.

This situation is apt to be modeled as a PL model. First, we need to

define the decision variables. In this case we have:

• P1 number of tonnes produced and sold of Product 1

• P2 number of tonnes produced and sold of Product 2

The cost coefficients of these variables are 20 and 60, respectively. There-

fore, the objective function is defined multiplying each variable by its

corresponding cost coefficient.
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The constraints of this LP are:

• A constraint WH making that the total amount of working hours

used in Product 1 and Product 2, which equals 30P1 + 20P2, is

less or equal than 2,700 hours.

• A similar constraint MH making that the total machine hours

5P1 + 10P2 are less or equal than 850.

• A PM constraint making that the total units produced and sold

P1 + P2 are greater or equal than 95.

Putting all this together, and considering that the decision variables are

nonnegative, the LP that maximizes profit is:

MAX z = 20P1 + 60P2

s.t. WH) 30P1 + 20P2 ≤ 2700

MH 5P1 + 10P2 ≤ 850

PM) P1 + P2 ≥ 95

P1 ≥ 0, P2 ≥ 0

2.2.3 A transportation problem

Let’s consider a transportation problem of two origins a and b, and three

destinations 1, 2 and 3. In Table 2.1 are presented the cost cij of trans-

porting one unit from the origin i to destination j, and the maximal

capacity of the origins and the required demand in the destinations.

We need to know how we must cover the demand of the destinations at

a minimal cost.
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1 2 3 capacity

a 8 6 3 70

b 2 4 9 40

demand 40 35 25

Table 2.1: Parameters of the transportation problem

This situation can be modeled with a LP with the following elements:

• Decision variables of the form xij , representing units transported

from origin i to destination j

• An objective function with cost coefficients equal to cij

• Two sets of constraints: a less or equal set of constraints for each

origin, limiting the units to be transported, and a greater of equal

set of constraints representing that the demand of each destina-

tion must be covered.

The resulting LP is:

MIN z = 8xa1 + 6xa2 + 3xa3 + 2xb1 + 4xb2 + 9xb3

s.a. ca) xa1 + xa2 + xa3 ≤ 70

cb) xb1 + xb2 + xb3 ≤ 40

d1) xa1 + xb1 ≥ 40

d2) xa2 + xb2 ≥ 35

d3) xa3 + xb3 ≥ 25

xij ≥ 0
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2.2.4 Transformations of elements of a LP

Transforming the objective function of a linear program is straightfor-

ward. A MAX problem can be transformed into MIN (and vice versa)

changing the sign of the cost coefficients:

MIN z = c′x⇔ MAX z′ = −c′x

Nonequality constraints can be transformed changing the signs of all

terms of the constraint:

ai1x1 + · · ·+ ainxn ≤ bi ⇔ −ai1x1 − · · · − ainxn ≥ −bi

A nonequality constraint can be turned into equality by adding nonneg-

ative variables:

ai1x1 + · · ·+ ainxn ≤ bi ⇒ ai1x1 + · · ·+ ainxn + si = bi

ak1x1 + · · ·+ aknxn ≥ bk ⇒ ak1x1 + · · ·+ aknxn − ek = bk

si ≥ 0, ek ≥ 0

Less than equal constraints are turned into equality by adding slack

variables si, and greater than equal constraints by excess variables ek.

If the original constraints have to be maintained, both types of variables

have to be nonnegative.

Finally, decision variables can also be transformed. A nonpositive vari-

able xi can be replaced by a nonnegative variable x
′
i making x

′
i = −xi.

A variable unconstrained in sign xk can be replaced by two nonnegative

variables x
′
k, x

′′
k by making xk = x

′
k − x

′′
k .
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2.2.5 Turning a PL into standard form

A usual transformation of a PL model is turning all constraints into

equalities adding slack and excess variables. This is required to solve

the PL using any version of the simplex algorithm. For instance, the

model defined in subsection 2.2.2 can be put into standard form mak-

ing:

MAX z = 20P1 + 60P2

s.t. WH) 30P1 + 20P2 + hW = 2700

MH 5P1 + 10P2 + hM = 850

PM) P1 + P2− eP = 95

P1, P2, hW , hM , eP ≥ 0

where hW and hM are equal to the working and machine hours, re-

spectively, not used in the proposed solution, and eP equals the total

production made over the minimal value required of 95. Note than

slack and excess variables have to be also nonnegative.

In the standard form, any constraint that was an inequality in the orig-

inal form will have its corresponding slack or excess variable equal to

zero when it is satisfied with the equal sign. Then we will say that this

constraint is active. If its corresponding slack or excess variable holds

with the inequality sign, its corresponding variable will be positive, and

the constraint will be not active.
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2.3 Solving the LP

The most extended procedure to solve the LP is the simplex algorithm,

developed by George Bernard Dantzig in 1947. This method takes ad-

vantage of the fact that the optimum or optima of a LP can be found

exploring its basic solutions. A basic solution of a LP in standard form

of n variables and m constraints has the following properties:

• has n−m nonbasic variables equal to zero: xN = 0

• has m basic variables greater or equal to zero: xN ≥ 0

When one or more basic variables equal zero, the solution is called

degenerate. The basic solutions correspond to the vertices of the feasible

region.

The strategy of the simplex method consists in:

• Finding an initial basic solution

• Explore the basic solutions moving in the direction of maximum

local increase (MAX) or decrease (MIN) of the objective function

• Stop when an optimal solution is found

The software that solves LPs uses usually the simplex algorithm, or the

revised simplex algorithm, a variant of the original simplex algorithm

that is implemented more efficiently on computers. Other algorithms

exist for particular LP problems, such as the transportation or trans-

shipment problem, or the maximum flow problem.
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Another approach to solve LPs is the interior point algorithm, developed

by Narenda Karmarkar [4]. This algorithm has been proven as partic-

ularly useful in large problems with sparse matrices. Contrarily to the

simplex approach, this algorithm starts from a point inside the feasible

region, and approaches the optimum iteratively.

2.4 Duality in linear programming

Let’s consider a MAX linear program in its canonical form:

MAX z = c′x

s. t. Ax ≤ b

x ≥ 0

The following linear program, expressed in MIN canonical form, is the

dual of the program above, called the primal:

MIN w = u′b

s. t. u′A ≥ c′

u ≥ 0

Note that each variable of the dual is linked with a constraint of the

primal, since both share the same bj parameter. Accordingly, each con-

straint of the dual is linked to a variable of the primal, as both share the

same ci parameter.

If the linear program is not expressed in canonical form, it can be turn

into canonical form using the transformations defined in section 2.2.

More conveniently, the dual can be obtained applying the transforma-

tions defined in Table 2.2 for the original formulation of the model.
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MAX MIN

constraint ≤ variable ≥ 0

constraint ≥ variable ≤ 0

constraint = variable unconstrained

variable ≥ 0 constraint ≥
variable ≤ 0 constraint ≤

variable unconstrained constraint =

Table 2.2: Primal to dual conversion table

2.4.1 Obtaining the dual of the LP

Let’s consider the LP formulated in subsection 2.2.2:

MAX z = 20P1 + 60P2

s.t. WH) 30P1 + 20P2 ≤ 2700

MH 5P1 + 10P2 ≤ 850

PM) P1 + P2 ≥ 95

P1 ≥ 0, P2 ≥ 0

The dual of this model will have three decision variables, one for each

constraint of the original LP. For clarity, let’s label these as WH, MH

and PM . And it will have two constraints, associated with the variables

of primal P1 and P2. Applying the rules of the Table 2.2 the dual can

be obtained easily:

MIN W = 2700WH + 850MH + 95PM

P1) 30WH + 5MH + PM ≥ 20

P2) 20WH + 10HM + PM ≥ 60

WH, HM, ≥ 0, PM ≤ 0
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2.4.2 Properties of the primal-dual relationship

There are some relevant properties concerning primal and dual:

The dual of dual is the primal

This can be easily proved just transforming the dual into a MAX canon-

ical form and finding its dual. This means that duality defines a one-to-

one correspondence between linear programs.

Optimum of primal and dual

An interesting property of duality is that if a linear program has a

bounded optimum, its primal has also a bounded optimum and both

have the same value:

z∗ = w∗ (2.1)

Dual variables as shadow prices

Furthermore, the values of the dual variables in the optimum represent

the shadow price of the constraints of the primal. This means that u∗i is

equal to:

u∗i =
∆z∗

∆bi
(2.2)

That is, the value of the dual in the optimum u∗i is equal to the change

of the value of the optimum of the objective function divided by the

change of the value of the right side term of its corresponding constraint
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i in the primal. Sometimes it is said that u∗i is the shadow price of

constraint i.

As the dual of the dual is the primal, we can also write:

x∗j =
∆w∗

∆cj
=

∆z∗

∆cj
(2.3)

That is, the change of the value of the objective function in the optimum

relative to the change of the cost coefficient cj is equal to x∗j .

2.5 Integer and mixed integer linear programming

The formulation of linear programming of section 2.2 states implicitly

that variables xj are real. But for some models it may be required that

all decisions variables are integer: then we have integer linear program-

ming (ILP). In other occasions, only a subset of the decision variables

is required to be integer: that is an instance of mixed integer linear pro-

gramming (MILP). Sometimes we will refer to MILP only when speaking

of ILP and MILP, since the later category is more generic.

A special case of integer variables are binary variables, integer variables

that can take only 0 and 1 values. Using binary variables widens consid-

erably the possibilities of linear programming model building. Through

binary variables can be modeled decision-making processes, and logical

constraints can be introduced.

A first step to solve a MILP or ILP is solving its relaxed form. The relaxed

MILP is a LP with the same objective function and constraints where all

decision variables are real or continuous. If the integer variables of a

MILP are integer in the optimum of the relaxed MILP, then the solution
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of the MILP is the same as the relaxed LP. There are some LP where the

optimal solution is integer. A particular interesting subset satisfies the

following properties:

• All righthand side values bi are integer

• The constraint coefficients matrix A is totally unimodular

A matrix A is totally unimodular when any square submatrix of A

(sometimes called minor) has determinant −1, 0 or +1. Some generic

PL problems have this property, like the transportation problem (see

subsection 2.2.3) or the assignment problem (see section 3.8).

For PL not satisfying this property, more generic strategies have to be

developed. The branch and bound procedure was introduced by Ailsa H

Lang and Alison G Doig as soon as 1960 [5]. Later the cutting plane and

the branch and cut strategies were introduced. All these strategies start

from the relaxation of the MILP, which provides a lower or upper bound

(for the MIN and MAX problems, respectively) of the optimal value of

the objective function. Later on, several linear programs are defined by

adding constraints to the initial relaxed linear program, in order to find

the solution of the MILP.

There are some relevant properties concerning MILP:

• The value of the objective function of the MILP will be poorer

that the relaxed LP: smaller for MAX problems, bigger for MIN

problems

• The resolution of the MILP can take more computational effort

than the relaxed LP, as several LPs have to be solved.
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• The results concerning duality and sensibility analysis obtained

from the relaxed MILP are not applicable to MILP problems.

2.6 Solving linear programming in R

There are several solvers available for solving linear programming mod-

els. A list can be found in http://bit.ly/1zkJpVw. Some of these solvers

can be embedded into larger programs to develop optimization prob-

lems. Some of them are written as C callable libraries, and are also

implemented in R packages. The following packages can be of interest

for R users:

• lp_solve is implemented through the lpSolve and lpSolveAPI

packages

• GLPK is implemented through the Rglpk package

• SYMPHONY is implemented through Rsymphony

All solver are implemented as R functions, and parameters can be passed

to these functions as R matrices and vectors. This also allows to em-

bed these solvers into larger programs. Some of these packages have

functions that can read LP and MILP programs from files, written in

standards such as CPLEX, MPS or AMPL/MathProg. In all problems de-

veloped in chapter 3 there is a section dedicated to the code used to

enter these models, and other section for the numerical results.

Most R packages solving LP implement solvers as functions, whose in-

put variables are:
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• A character variable indicating if we have a maximization or min-

imization problem

• Vectors with cost coefficients c and righthand side values b

• A matrix with the A coefficients

• A character vector with the constraint signs.

For ILP or MILP models, an additional vector indicating which variables

are integer must be passed to the function. Alternatively, some logical

variables indicate if all variables are integer or binary.

2.6.1 Solving two LPs with the lpSolve package

In small problems, like the one defined in subsection 2.2.2, the defini-

tion of parameters is easy, if we know something about the R notation.

The following code solves that LP with two variables.� �
library(lpSolve)

#defining parameters

5 obj.fun <- c(20, 60)

constr <- matrix(c(30, 20, 5, 10, 1, 1), ncol = 2, byrow=

TRUE)

constr.dir <- c(" <=", " <=", ">=")

rhs <- c(2700 , 850, 95)

10 #solving model

prod.sol <- lp("max", obj.fun , constr , constr.dir , rhs ,

compute.sens = TRUE)
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#accessing to R output

15

prod.sol$obj.val #objective function value

prod.sol$solution #decision variables values

prod.sol$duals #includes duals of constraints and reduced

costs of variables

20 #sensibility analysis results

prod.sol$duals.from

prod.sol$duals.to

prod.sol$sens.coef.from

25 prod.sol$sens.coef.to� �
For larger problems, there can be more efficient ways of passing model

parameters than listing all variables. This is the case of the LP defined

in subsection 2.2.3, a small instance of the more generic transportation

problem. The following code defines the matrix A for any number of

origins m and destinations n of a transportation problem.� �
library(lpSolve)

#defining parameters

#origins run i in 1:m

5 #destinations run j in 1:n

obj.fun <- c(8, 6, 3, 2, 4, 9)

m <- 2

n <- 3

10

constr <- matrix(0, n+m, n*m)

for(i in 1:m){

for(j in 1:n){
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15 constr[i, n*(i-1) + j] <- 1

constr[m+j, n*(i-1) + j] <- 1

}

}

20 constr.dir <- c(rep(" <=", m), rep(" >=", n))

rhs <- c(70, 40, 40, 35, 25)

#solving LP model

25 prod.trans <- lp("min", obj.fun , constr , constr.dir , rhs ,

compute.sens = TRUE)

#LP solution

prod.trans$obj.val

sol <- matrix(prod.trans$solution , m, n, byrow=TRUE)

30 prod.trans$duals

#sensitivity analysis of LP

prod.trans$duals.from

prod.trans$duals.to

35 prod.trans$sens.coef.from

prod.trans$sens.coef.to� �

2.6.2 Syntax to parse LP models

When used outside R, PL solvers load the problems using several PL

syntax. Among the most used syntaxs are CPLEX, MPS or MathProg.

The following code picks a model written in CPLEX format, and uses

the Rglpk package to solve it. It returns the solution in the original

Rglpk format, and in data frame and LATEX formats. It has been used to

solve several LPs of the next chapter.
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� �
SolverLP <- function(model , method="CPLEX_LP", decimal =0)

{

library(Rglpk)

model1.lp <- Rglpk_read_file(model , type = method ,

verbose=F)

5

model1.lp.sol <- Rglpk_solve_LP(model1.lp$objective ,

model1.lp$constraints [[1]], model1.lp$constraints

[[2]], model1.lp$constraints [[3]] , model1.lp$bounds ,

model1.lp$types , model1.lp$maximum)

library(xtable)

10 model1.lp.sol.df <- as.data.frame(model1.lp.sol$solution)

model1.lp.sol.df <- rbind(model1.lp.sol.df, c(model1.lp.

sol$optimum))

rownames(model1.lp.sol.df) <- c(attr(model1.lp , "

objective_vars_names"),"obj")

colnames(model1.lp.sol.df) <- "Solution"

15 table.sol <- xtable(model1.lp.sol.df, digits=decimal)

results <- list(sol=model1.lp.sol , df=model1.lp.sol.df ,

latex=table.sol)

return(results)

}� �
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CHAPTER3
Modeling linear programming
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3.1 A production plan with fixed costs

A manufacturing manager is in charge of minimizing the total costs

(raw materials, labor and storage costs) of the following four months.

In Table 3.1 can be found the cost of raw materials of one unit of final

product, the demand of final product and the working hours available

for each month. Labor costs are of 12 e per hour, and only worked

hours are payed. Each unit of final product needs 30 minutes of labor.

Storage costs are equal to 2 e for each unit stored at the end of the

month. Any unit produced at a given month can be used to cover the

demand of the same month, or be stored to cover the demand of months

to come. At the beginning of month 1 there is no stock, and there are

no minimum stock requirements for any month.

Month 1 2 3 4

Unit cost (e) 6 8 10 12

Demand (units) 100 200 150 400

Working hours available 200 200 150 150

Table 3.1: Information for the production plan

1. Define the decision variables (provide a brief definition of each

set of defined variables), objective function and constraints of a

linear programming model that minimizes total production costs.

2. Modify the model of the previous section if a fixed cost of 1,000

e has to be taken into account for each month that there is pro-

duction. This cost is assumed only if there is production different

from zero in that month.
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Models

1. Define the decision variables (provide a brief definition of each

set of defined variables), objective function and constraints of a

linear programming model that minimizes total production costs.

The variables used in to define the model are defined for i = 1, . . . , 4:

• Variables qi representing the quantity produced in month i

• Variables si representing the stock at the end of month i

The constraints di ensure that the demand is covered and constraints ui

should be added to make qi no larger that its required upper bound.

MAX z =
4∑

i=1

(12qi + 2si)

d1) q1 − s1 = 100

d2) s1 + q2 − s2 = 200

d3) s2 + q3 − s3 = 150

d4) s3 + q4 − s4 = 400

u1) q1 ≤ 400

u2) q2 ≤ 400

u3) q3 ≤ 300

u4) q4 ≤ 300

si ≥ 0
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2. Modify the model of the previous section if a fixed cost of 1,000

e has to be taken into account for each month that there is pro-

duction. This cost is assumed only if there is production different

from zero in that month.

For this version of the model, four binary variables bi are added, which

equal one if there is production in month i, and zero otherwise. A

set of constraints of the kind qi ≤ Mbi have been defined, although

the constraints of upper bound can be also used, for instance making

q1 ≤ 400b1:

MAX z =
4∑

i=1

(12qi + 2si + 1000bi)

d1) q1 − s1 = 100

d2) s1 + q2 − s2 = 200

d3) s2 + q3 − s3 = 150

d4) s3 + q4 − s4 = 400

u1) q1 ≤ 400b1

u2) q2 ≤ 400b2

u3) q3 ≤ 300b3

u4) q4 ≤ 300b4

si ≥ 0, bi binary

CHAPTER 3. MODELING LINEAR PROGRAMMING Sallan Lordan Fernandez | 33



Code

The CPLEX format of both models are:� �
Minimize

cost: 12q1 + 14q2 + 16q3 + 18q4 + 2s1 + 2s2 + 2s3 + 2s4

Subject To

d1: q1 - s1 = 100

5 d2: s1 + q2 - s2 = 200

d3: s2 + q3 - s3 = 150

d4: s3 + q4 - s4 = 400

Bounds

0 <= q1 <= 400

10 0 <= q2 <= 400

0 <= q3 <= 300

0 <= q4 <= 300

End� �
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� �
Minimize

cost: 12q1 + 14q2 + 16q3 + 18q4 + 2s1 + 2s2 + 2s3 + 2s4 +

1000b1 + 1000b2 + 1000b3 + 1000b4

Subject To

d1: q1 - s1 = 100

5 d2: s1 + q2 - s2 = 200

d3: s2 + q3 - s3 = 150

d4: s3 + q4 - s4 = 400

l1: q1 - 400b1 <= 0

l2: q2 - 400b2 <= 0

10 l3: q3 - 300b3 <= 0

l4: q4 - 300b4 <= 0

Binary

b1

b2

15 b3

b4

End� �
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Numerical solution

The solution of the proposed models can be found in Table 3.2 and

Table 3.3.

Month 1 Month 2 Month 3 Month 4

qi 100 200 250 300

si 0 0 100 0

Table 3.2: Solution model 1 (z = 13,600)

Month 1 Month 2 Month 3 Month 4

qi 400 0 150 300

si 300 100 100 0

bi 1 0 1 1

Table 3.3: Solution model 2 (z = 16,600 e)

CHAPTER 3. MODELING LINEAR PROGRAMMING Sallan Lordan Fernandez | 36



3.2 A purchase plan with decreasing unit costs

A manufacturing manager is in charge of minimizing the purchasing

costs (raw materials plus storage costs) of the following four months.

In Table 3.4 can be found the cost of one unit of raw material and the

demand of raw material for each month. Storage costs are equal to 2 e

for each unit stored at the end of the month. Any unit of raw material

purchased at given month can be used to cover the demand of the same

month, or be stored to cover the demand of months to come. At the

beginning of month 1 there is no stock, and there are no minimum

stock requirements for any month.

Month 1 2 3 4

Unit cost (e) 12 14 16 18

Demand (units) 150 200 250 150

Table 3.4: Information for the purchasing plan

For the next four months, the supplier of raw materials has made an

special offer: all units purchased above 200 in any given month will

have a discounts of 2 e. For instance, if a purchase of 350 units is

ordered in month 1, the first 200 units will be sold for 12 e each, and

the following 150 will be sold for 10 e each.

1. Define the decision variables (provide a brief definition of each

set of defined variables), objective function and constraints of a

linear programming model that minimizes total purchasing costs.
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Models

The challenge of this model is to make the linear program pick the first

200 expensive units of each month, before picking the cheap units. A

possible way of doing so is to define the following variables for i =

1, . . . , 4:

• Variables qi representing the quantity purchased in month i equal

or below 200

• Variables ri representing the quantity purchased in month i above

200

• Variables si representing the stock at the end of month i

• Variables bi binary which are equal to 1 if more than 200 units are

purchased on month i

Note that the total purchase in a given month is equal to qi+ri. So pick-

ing the monthly demand from Table 3.4 we can define the constraints

(where di is the demand listed on Table 3.4):

si−1 + qi + ri − si = di

To be sure that we pick the expensive units before the cheap, we need

to define the following constraints for each month:

qi ≤ 200

qi ≥ 200bi

ri ≤Mbi

So if bi = 0, we have that qi ≤ 200 and ri = 0, since the second

constraint is inactive. But when bi = 1, we have that qi ≤ 200 and
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qi ≥ 200 at the same time, thus qi = 200, while there is no upper bound

for ri, if M is large enough.

Therefore, if ci are the unit costs of purchasing on month i the model

is:

MIN z =
4∑

i=1

(ciqi + (ci − 2) ri + 2si)

si−1 + qi + ri − si = di i = 1, . . . , 4

qi ≤ 200

qi ≥ 200bi

ri ≥Mbi

qi, ri ≥ 0, bi
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Code

A possible implementation of this model in CPLEX can be:� �
Minimize

cost: 12q1 + 14q2 + 16q3 + 18q4 + 10r1 + 12r2 + 14r3 + 16

r4 + 2s1 + 2s2 + 2s3 + 2s4

Subject To

d1: q1 +r1 - s1 = 150

5 d2: s1 + q2 + r2 - s2 = 200

d3: s2 + q3 + r3 - s3 = 250

d4: s3 + q4 + r4 - s4 = 150

l1: q1 - 200b1 >= 0

l2: q2 - 200b2 >= 0

10 l3: q3 - 200b3 >= 0

l4: q4 - 200b4 >= 0

m1: r1 - 10000b1 <= 0

m2: r2 - 10000b2 <= 0

m3: r3 - 10000b3 <= 0

15 m4: r4 - 10000b4 <= 0

Bounds

0 <= q1 <= 200

0 <= q2 <= 200

0 <= q3 <= 200

20 0 <= q4 <= 200

Binary

b1

b2

b3

25 b4

End� �
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Numerical solution

In Table 3.5 is listed the solution of the model. The total costs of the

production plan are of 10,200 e, and the best option is to purchase

all units on month 1. The total amount to purchase on that month is

q1 + r1 = 200 + 550 = 750.

Month 1 Month 2 Month 3 Month 4

qi 200 0 0 0

ri 550 0 0 0

si 600 400 150 0

bi 1 0 0 0

Table 3.5: Solution of problem 3.2. Total costs: 10,200 e
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3.3 A production plan with extra capacity

You are in charge of planning the production of a chemical product for

the next four months. The monthly demand and the purchasing unit

costs of raw material are listed in Table 3.6. The capacity of the plant is

of 1,300 tonnes (t.) per month. The demand of a month can be covered

with the production of the same month, and also with production of

past months. The storage costs are of 2 ke per tonne stocked at the

end of the month. The stock of finished product at the beginning of the

first month is of 200 T, and it is expected to hold the same quantity at

the end of the fourth month. There are no stocks of raw material, so all

stocks are of finished product.

Month 1 2 3 4

Costs (ke/t) 3 8 6 7

Demand (t) 800 900 1,200 1,800

Table 3.6: Demand and unit production costs for the next following months

1. Obtain the linear programming model that allows to obtain the

production plan which minimizes the sum of production and stor-

age costs.

2. What is the meaning of the dual variables of the constraints de-

fined in the model?

As the demand is proven to be irregular, the plant management is con-

sidering the possibility of adding extra capacity to the plant, introducing

a new shift. This new shift would increase plant capacity in 400 T per

month, but also would include an extra fixed cost of 500 ke. For legal
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reasons, it is not possible to add extra capacity in a month if it has been

added in the previous month.

3. Modify the model obtained previously to include the possibility of

including extra shifts, and assess the practicality of adding extra

shifts.
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Models

1. Obtain the linear programming model that allows to obtain the

production plan which minimizes the sum of production and stor-

age costs.

The variables to use in the model are:

• Variables qi real: number of tonnes to produce on month i

• Variables si real: number of tonnes in stock at the end of month i

Then the model is as follows:

MIN z = 3q1 + 8q2 + 6q3 + 7q4 + 2 (s1 + s2 + s3 + s4)

s.a. D1) 200 + q1 = 800 + s1

D2) s1 + q2 = 900 + s2

D3) s2 + q3 = 1200 + s3

D4) s3 + q4 = 1800 + s4

S4) s4 = 200

C1) q1 ≤ 1300

C2) q2 ≤ 1300

C3) q3 ≤ 1300

C4) q4 ≤ 1300

qi ≥ 0, si ≥ 0

2. What is the meaning of the dual variables of the constraints de-

fined in the model?
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The dual variables are the shadow price of the constraint, that is, the

variation of the objective function z caused by variations of the right-

hand side term bi of constraint i that do not change the optimal base.

As the objective function represents the total costs, the meaning of the

dual variables of the constraints is:

• For constraints D1 to D4, and S4 this variable represents the in-

crease of total costs as the demand of the considered month in-

creases. Although formally the dual variable of these constraints

is of unrestricted sign, it will be always nonnegative.

• For constraints C1 to C4 this variable represents the decrease of

total costs as the capacity of a given month increases. The dual

variables of these constraints will be nonpositive.

3. Modify the model obtained previously to include the possibility of

including extra shifts, and assess the practicality of adding extra

shifts.

To consider the possibility of adding extra capacity to the model, a new

set of binary variables has to be defined:

• Variables bi that are equal to 1 if extra capacity is added in month

i, and 0 otherwise.

These variables can allow us to include the constraints about the impos-

sibility of contracting extra capacity in two consecutive months. Let’s

consider months 1 and 2, to begin with. The possible values that binary

variables can have are listed in Table 3.7.
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b1 b2

0 0 True

0 1 True

1 0 True

1 1 False

Table 3.7: Possible values of variables b1 and b2

The only possibility we need to exclude from Table 3.7 is that b1 = 1 and

b2 = 1 simultaneously. We can achieve this easily adding the constraint:

b1 + b2 ≤ 1
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We will proceed similarly for months 2 and 3, and months 3 and 4. So

the final model is:

MIN z = 3q1 + 8q2 + 6q3 + 7q4 + 2 (s1 + s2 + s3 + s4) +

+ 500 (b1 + b2 + b3 + b4)

s.a. D1) 200 + q1 = 800 + s1

D2) s1 + q2 = 900 + s2

D3) s2 + q3 = 1200 + s3

D4) s3 + q4 = 1800 + s4

S4) s4 = 200

C1) q1 ≤ 1300 + 400b1

C2) q2 ≤ 1300 + 400b2

C3) q3 ≤ 1300 + 400b3

C4) q4 ≤ 1300 + 400b4

B1) b1 + b2 ≤ 1

B1) b2 + b3 ≤ 1

B1) b3 + b4 ≤ 1

qi ≥ 0, si ≥ 0, bi ∈ {0, 1}
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Code

Below are listed the implementations of the defined models in CPLEX

standard.� �
Minimize

cost: 3q1 + 8q2 + 6q3 + 7q4 + 2s1 + 2s2 + 2s3 + 2s4

Subject To

d0: s0 = 200

5 d1: q1 + s0 - s1 = 800

d2: s1 + q2 - s2 = 900

d3: s2 + q3 - s3 = 1200

d4: s3 + q4 - s4 = 1800

d5: s4 = 200

10 Bounds

0 <= q1 <= 1300

0 <= q2 <= 1300

0 <= q3 <= 1300

0 <= q4 <= 1300

15 End� �
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� �
Minimize

cost: 3q1 + 8q2 + 6q3 + 7q4 + 2s1 + 2s2 + 2s3 + 2s4 + 500

b1 + 500b2 + 500b3 + 500b4

Subject To

d0: s0 = 200

5 d1: q1 + s0 - s1 = 800

d2: s1 + q2 - s2 = 900

d3: s2 + q3 - s3 = 1200

d4: s3 + q4 - s4 = 1800

d5: s4 = 200

10 e1: q1 - 400b1 <= 1300

e2: q2 - 400b2 <= 1300

e3: q3 - 400b3 <= 1300

e4: q4 - 400b4 <= 1300

c1: b1 + b2 <= 1

15 c2: b2 + b3 <= 1

c3: b3 + b4 <= 1

Binary

b1

b2

20 b3

b4

End� �
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Numerical solutions

The solution of the first model is listed in Table 3.8:

Month 1 2 3 4

qi 1,300 800 1,300 1,300

si 700 600 700 200

Table 3.8: Optimal production plan (version 1). Total costs: 31,600 ke

The solution of the second model is listed in Table 3.9. If we compare

the value of the objective function of both models, we can see that a

saving is obtained including the possibility of adding extra capacity on

months 1 and 4.

Month 1 2 3 4

qi 1,700 0 1,300 1,700

si 1,100 200 300 200

bi 1 0 0 1

Table 3.9: Optimal production plan (version 2). Total costs: 29,400 ke
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3.4 Transportation by trucks

In Table 3.10 can be found the quarterly demand (in tonnes) and the

acquisition costs per tonne (in ke per tonne) for each quarter of raw

materials for a chemical plant. All purchases in a given quarter can

be used to cover the demand of the present quarter, or the demand of

quarters in the future. The costs of stocking are of 8 ke per tonne stored

at the end of each quarter. The stocks at the beginning of first quarter

are of 100 tonnes, and it is needed the same amount of stock at the end

of the fourth quarter.

Quarter T1 T2 T3 T4

Demand 1,000 1,200 1,500 1,800

Unit costs 20 25 30 40

Table 3.10: Demand of raw material (t) and unit costs (ke/ t) for each quarter

In addition to the purchase and storage costs, the transportation costs

have to be considered. All the purchased quantity of raw materials has

to be transported, using any combination of the two available truck

models:

• Small trucks: cost of 700 ke, and capacity of 500 tonnes.

• Large trucks: cost of 1,400 ke, and capacity of 1,200 tonnes.

We need to define a linear programming model that allows the mini-

mization of the total costs: acquisition, storage and transport, obtain-

ing the amount raw materials to purchase, and the amount of trucks of

both kinds to be contracted each quarter.
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Models

The variables to define are:

• qi continuous: tonnes of raw material to purchase in quarter i

• si continuous: tonnes in stock at the end of quarter i, and s0 as

the initial stock

• ti integer: small trucks to contract in quarter i

• ui integer: large trucks to contract in quarter i

Once defined the variables, two sets of constraints have to be defined:

• Constraints assuring that the purchase plan meets the demand

commitments. These are of the form si−1 + qi − si = di, being di

the demand of the quarter.

• Constraints assuring that a sufficient number of each kind of trucks

is contracted: qi ≤ 500ti + 1200ui

The resulting model is:

MIN z =
4∑

i=1

(ciqi + 8si + 700ti + 1400ui)

si−1 + qi − si = di i = 1, . . . , 4

qi − 500ti − 1200ui ≤ 0 i = 1, . . . , 4

s0 = s4 = 100

si, qi ≥ 0

ti, ui ≥ 0, integer
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where ci and di are the unit costs and demand for each quarter reported

in Table 3.10.

Code� �
Minimize

cost: 20q1 + 25q2 + 30q3 + 40q4 + 8s1 + 8s2 + 8s3 + 8s4 +

700t1 + 700t2 + 700t3 + 700t4 + 1400u1 + 1400u2 +

1400u3 + 1400u4

Subject To

sini: s0 = 100

5 dem1: s0 + q1 - s1 = 1000

dem2: s1 + q2 - s2 = 1200

dem3: s2 + q3 - s3 = 1500

dem4: s3 + q4 - s4 = 1800

sfin: s4 = 100

10

cap1: q1 - 500t1 - 1200u1 <= 0

cap2: q2 - 500t2 - 1200u2 <= 0

cap3: q3 - 500t3 - 1200u3 <= 0

cap4: q4 - 500t4 - 1200u4 <= 0

15

Integer

t1

t2

t3

20 t4

u1

u2

u3

u4

25

End� �
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Numerical solution

This is the numerical solution of the proposed model:

Q1 Q2 Q3 Q4

qi 900 1,200 3,400 0

si 0 0 1,900 100

ti 2 0 0 0

ui 0 1 3 0

Table 3.11: Solution of the linear program (z = 173,000 ke)
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3.5 Production of two models of chairs

A company produces two models of chairs: 4P and 3P. The model 4P

needs 4 legs, 1 seat and 1 back. On the other hand, the model 3P needs

3 legs and 1 seat. The company has a initial stock of 200 legs, 500 seats

and 100 backs. If the company needs more legs, seats and backs, it can

buy standard wood blocks, whose cost is 80 e per block. The company

can produce 10 seats, 20 legs and 2 backs from a standard wood block.

The cost of producing the model 4P is 30 e/chair, meanwhile the cost

of the model 3P is 40 e/chair. Finally, the company informs that the

minimum number of chairs to produce is 1,000 units per month.

1. Define a linear programming model, which minimizes the total

cost (the production costs of the two chairs, plus the buying of

new wood blocks).

Due to the economic crisis, the company has considered the possibility

to just produce a single chair model between 3P and 4P.

2. Define the new linear programming model for producing only a

single chair model, which minimizes the total cost.

Finally, the new CEO (Chief Executive Officer) of the company has de-

cided that the factory needs to produce of the model 4P a minimum of

4 times the quantity of the model 3P.

3. Define the new linear programming model, which minimizes the

total cost when producing 4P four times the quantity of 3P.
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Models

1. Define a linear programming model, which minimizes the total

cost (the production costs of the two chairs, plus the buying of

new wood blocks).

The definition of variables is straigthforward:

• X4P : Number of chairs to produce of the model 4P

• X3P : Number of chairs to produce of the model 3P

• XWOOD: Number of standard wood block to buy

The required LP model is:

[MIN ]cost = 80XWOOD + 30X4P + 20X3P

SEATS)X4P + X3P ≤ 500 + 10XWOOD

LEGS)4X4P + 3X3P ≤ 200 + 20XWOOD

BACKS)X4P ≤ 100 + 2WOOD

DEM)X4P + X3P ≥ 1000

where X4P,X3P,XWOOD are integer and non-negative variables.

Note that for each block of wood, 10 units of seats and 20 units of

legs and 2 units of backs are produced.

2. Define the new linear programming model for producing only a

single chair model, which minimizes the total cost.

This model includes the same variables as the model above, plus a new

binary variable representing the decision of choosing between the 3P

and the 4P model:
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• BX: ‘1’ means the factory has decided to produce the model 3P.

‘0’ means the factory has decided to produce the model 4P. Binary.

[MIN ]cost = 80XWOOD + 30X4P + 20X3P

SEATS)X4P + X3P ≤ 500 + 10XWOOD

LEGS)4X4P + 3X3P ≤ 200 + 20XWOOD

BACKS)X4P ≤ 100 + 2WOOD

DEM)X4P + X3P ≥ 1000

SEL_3P )X3P ≤M ·BX

SEL_4P )X4P ≤M · (1−BX)

where X4P,X3P,XWOOD are integer and non-negative variables,

BX is binary variable, and M is a large value, so the constraint SEL_3P

is non active when BX = 1, and SEL_4P is non active when BX = 0.

3. Define the new linear programming model, which minimizes the

total cost when producing 4P four times the quantity of 3P.

In this case, we don’t need to add any new variable, but a constraint

representing the restriction regarding the proportion between produced

units of each chair.
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[MIN ]cost = 80XWOOD + 30X4P + 20X3P

SEATS)X4P + X3P ≤ 500 + 10XWOOD

LEGS)4X4P + 3X3P ≤ 200 + 20XWOOD

BACKS)X4P ≤ 100 + 2WOOD

DEM)X4P + X3P ≥ 1000

TIMES)4X3P ≤ X4P

where X4P,X3P,XWOOD are integer and non-negative variables.
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Code

Below can be found the three models implemented in CPLEX standard:� �
Minimize

cost: 80xwood + 30x4p + 40x3p

Subject To

seats: x4p + x3p - 10 xwood <= 500

5 legs: 4x4p + 3x3p - 20 xwood <= 200

backs: x4p - 2xwood <= 100

dem: x4p + x3p >= 1000

Integer

x3p

10 x4p

xwood

End� �
In this second model, the BX variable has been labeled decision� �
Minimize

cost: 80xwood + 30x4p + 40x3p

Subject To

seats: x4p + x3p - 10 xwood <= 500

5 legs: 4x4p + 3x3p - 20 xwood <= 200

backs: x4p - 2xwood <= 100

dem: x4p + x3p >= 1000

dec3: x3p - 1000 decision <= 0

dec4: x4p + 1000 decision <= 1000

10 Integer

x3p

x4p

xwood

Binary

15 decision

End� �
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� �
Minimize

cost: 80xwood + 30x4p + 40x3p

Subject To

seats: x4p + x3p - 10xwood <= 500

5 legs: 4x4p + 3x3p - 20xwood <= 200

backs: x4p - 2xwood <= 100

dem: x4p + x3p >= 1000

times: x4p - 4x3p >= 0

Integer

10 x3p

x4p

xwood

End� �
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Numerical solutions

In Table 3.12 can be found the numerical solution of the three models.

Note that the model with less cost is the first one, since it is the one

with a larger feasible region.

Model 1 Model 2 Model 3

xwood 161 140 350

x4p 420 0 800

x3p 580 1,000 200

decision — 1 —

obj(e) 48,680 51,200 60,000

Table 3.12: Solutions of the three proposed models
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3.6 Hiring and firing

In Table 3.13 are listed the needs of pilots able to flight an A320 for the

following six months. The cost of a pilot’s salary is 8 ke per month. At

the beginning of Month 1 the airline has a staff of 20 pilots, but this

staff can be adjusted each month.

Month 1 2 3 4 5 6

Needed pilots 30 60 55 40 45 50

Table 3.13: Needs of pilots for the following six months

Pilots can be hired and fired at the beginning of each month. Newly

hired pilots can start working at the same month, and fired pilots stop

working the same day they are fired. The cost of firing a pilot is 10 ke,

and the hiring cost is of 5 ke per pilot. If it is convenient, the airline

can have a staff of pilots larger than the actual needs.

1. Define a linear programming model to obtain the pilots to hire

and fire each month to minimize the total cost of pilot staff (costs

of salary plus hiring and firing costs).

2. Modify the linear model to include the constraint that the airline

cannot fire pilots if it has hired pilots the previous month.
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Models

1. Define a linear programming model to obtain the pilots to hire

and fire each month to minimize the total cost of pilot staff (costs

of salary plus hiring and firing costs).

To model this situation, we’ll have to define the following variables:

• Variables hi: pilots hired at the beginning of month i

• Variables fi: pilots fired at the beginning of month i

• Variables si: staff of pilots during month i

The model should have the following groups of constraints:

• Constraints assuring that the staff of pilots at the beginning of

month i is equal to si = hi − fi + si−1. In this case, we have that

s0 = 20.

• Constraints assuring that variables si are bigger of equal to the

values of staff required di listed in Table 3.13.

Then, the linear program to solve is:

[MIN]z = 5

6∑
i=1

hi + 10

6∑
i=1

fi + 8
6∑

i=1

si

si = hi − fi + si−1 i = 1, . . . , 6

si ≥ di i = 1, . . . , 6

hi, fi ≥ 0 i = 1, . . . , 6
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The solution of this model can be found in Table 3.14.

2. Modify the linear model to include the constraint that the airline

cannot fire pilots if it has hired pilots the previous month.

Looking at the solution of the previous problem in Table 3.14, it can

be seen that this new constraint does not hold for months 2 and 3: in

month 2 are hired 30 pilots, and in month 3 are fired 5 pilots. Then a

new model has to be defined to account for this new restriction. To do

so, we have to add a new binari variable:

• Variabe bi: equals one if pilots are hired in month i, and zero

otherwise

Then, two new sets of constraints must be added: one set assuring that

bi = 0⇒ fi = 0, and another set making that bi = 1⇒ fi+1 = 0:

[MIN]z = 5

6∑
i=1

hi + 10

6∑
i=1

fi + 8

6∑
i=1

si

si = hi − fi + si−1 i = 1, . . . , 6

si ≥ di i = 1, . . . , 6

fi ≤Mbi i = 1, . . . , 5

hi+1 ≤M (1− bi) i = 1, . . . , 5

bi ∈ {0, 1} i = 1, . . . , 5

hi, fi ≥ 0 i = 1, . . . , 6

The solution for this new model is listed in Table 3.15.
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Code� �
Minimize

cost: 5h1 + 5h2 + 5h3 + 5h4 + 5h5 + 5h6 + 10f1 + 10f2 +

10f3 + 10f4 + 10f5 + 10f6 + 8s1 + 8s2 + 8s3 + 8s4 + 8

s5 + 8s6

Subject To

sini: s0 = 20

5 sm1: s0 + h1 - f1 - s1 = 0

sm2: s1 + h2 - f2 - s2 = 0

sm3: s2 + h3 - f3 - s3 = 0

sm4: s3 + h4 - f4 - s4 = 0

sm5: s4 + h5 - f5 - s5 = 0

10 sm6: s5 + h6 - f6 - s6 = 0

Bounds

30 <= s1

60 <= s2

55 <= s3

15 40 <= s4

45 <= s5

50 <= s6

End� �� �
Minimize

cost: 5h1 + 5h2 + 5h3 + 5h4 + 5h5 + 5h6 + 10f1 + 10f2 +

10f3 + 10f4 + 10f5 + 10f6 + 8s1 + 8s2 + 8s3 + 8s4 + 8

s5 + 8s6

Subject To

sini: s0 = 20

5 sm1: s0 + h1 - f1 - s1 = 0

sm2: s1 + h2 - f2 - s2 = 0

sm3: s2 + h3 - f3 - s3 = 0

sm4: s3 + h4 - f4 - s4 = 0

sm5: s4 + h5 - f5 - s5 = 0

10 sm6: s5 + h6 - f6 - s6 = 0

hf01: f1 - 1000b1 <= 0
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hf02: f2 - 1000b2 <= 0

hf03: f3 - 1000b3 <= 0

hf04: f4 - 1000b4 <= 0

15 hf05: f5 - 1000b5 <= 0

hf06: h2 + 1000b1 <= 1000

hf07: h3 + 1000b2 <= 1000

hf08: h4 + 1000b3 <= 1000

hf09: h5 + 1000b4 <= 1000

20 hf10: h6 + 1000b5 <= 1000

Bounds

30 <= s1

60 <= s2

55 <= s3

25 40 <= s4

45 <= s5

50 <= s6

Binary

b1

30 b2

b3

b4

b5

End� �
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Numerical solutions

Below are listed the solutions of both linear programs. In the second

case the values of binary variables has been omitted.

Month 1 2 3 4 5 6

Hired 10 30 0 0 0 5

Fired 0 0 5 10 0 0

Staff 30 60 55 45 45 50

Staff req. 30 60 55 40 45 50

Table 3.14: Optimal solution for the first model of staff planning. Total costs:

2,655 ke

Month 1 2 3 4 5 6

Hired 10 30 0 0 0 5

Fired 0 0 0 15 0 0

Staff 30 60 60 45 45 50

Staff req. 30 60 55 40 45 50

Table 3.15: Optimal solution for the second model of staff planning. Total costs:

2,695 ke
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3.7 Planning of shifts through linear programming

A company has a emergency center which is working 24 hours a day. In

Table 3.16 is detailed the minimal needs of employees for each of the

six shifts of four hours in which the day is divided.

Shift Employees

00:00 - 04:00 5

04:00 - 08:00 7

08:00 - 12:00 18

12:00 - 16:00 12

16:00 - 20:00 15

20:00 - 00:00 10

Table 3.16: Information for the production plan

Each of the employees of the emergency center works eight hours a

day, covering two consecutive shifts of four hours. For instance, a given

employee may start working at 20:00, and end working at 04:00.

You are asked to define a linear programming model which can define a

planning of shifts that allows to cover the minimal needs for each shift

with a minimum number of employees.
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Model

To define the model, a set of eight variables has to be defined:

• Variable si (integer): number of employees that starts working in

shift i

Then, the model to be defined for this situation is:

[MIN]z = s1 + s2 + s3 + s4 + s5 + s6

s6 + s1 ≥ 5

s1 + s2 ≥ 7

s2 + s3 ≥ 18

s3 + s4 ≥ 12

s4 + s5 ≥ 15

s5 + s6 ≥ 10

si integer

Note that the constraints have been defined as greater o equal: the

data in Table 3.16 is interpreted as the minimal number of employees

required for each shift. If constraints were defined as inequalities, there

should be only one solution, which can be not integer. This interpreta-

tion gives flexibility to the model in order to find the optimal solution.

In Table 3.17 is listed the solution for this model: all minimal needs are

covered with a staff of 38 employees.
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Code� �
Minimize

workforce: s1 + s2 + s3 + s4 + s5 + s6

Subject To

t1: s6 + s1 >= 5

5 t2: s1 + s2 >= 7

t3: s2 + s3 >= 18

t4: s3 + s4 >= 12

t5: s4 + s5 >= 15

t6: s5 + s6 >= 10

10 Integer

s1

s2

s3

s4

15 s5

s6

End� �
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Numerical solution

Solution

s1 5

s2 6

s3 12

s4 0

s5 15

s6 0

obj 38

Table 3.17: Optimal solution of the proposed model (number of employees)
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3.8 Assignment maximizing minimal quality

In Table 3.18 can be found the quality with which five teachers (T1 to

T5) teach five courses (C1 to C5). Each teacher teaches one course and

each course is taught by one teacher.

C1 C2 C3 C4 C5

T1 34 87 26 47 76

T2 43 90 24 63 97

T3 60 65 64 83 54

T4 89 62 39 37 18

T5 27 15 69 93 96

Table 3.18: Quality of courses C when taught by teacher T

We intend to define two LP models to assign teachers to courses follow-

ing two criteria of quality:

1. Maximizing the total quality of courses obtained from the assign-

ment

2. Maximizing the minimal quality of courses obtained from the as-

signment
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Models

Total quality maximization

This problem is an instance of the more generic assignment problem:

to assign tasks (courses) to agents (teachers) to maximize total quality.

This formulation is equivalent to maximizing average quality, since this

average is equal to total quality divided by the number of tasks.

To solve this problem we need to define the variables:

• Variable xij binary, which equals one if task j is assigned to agent

i and zero otherwise.

The cost coefficients of the objective function will be the elements cij of

Table 3.18, and two groups of constraints are needed:

• Constraints assuring that each course j is taught by a one teacher

only

• Constraints assuring that each teacher i is teaching only one course

The model is:

MAX z =

n∑
i=1

n∑
j=1

cijxij

n∑
i=1

xij = 1 j = 1, . . . , n

n∑
j=1

xij = 1 i = 1, . . . , n

xijbinary
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Maximization of minimal quality

This variant is a particular case of a maximin linear program formu-

lation, that is, maximizing the minimum value of a set of functions. To

implement this formulation, we need the same variables xij plus a vari-

able q which will be a lower bound of course quality.

To make q a lower bound of course quality it must be stated that the

quality of any course j will be greater or equal than q:

n∑
i=1

cijxij ≥ q j = 1, . . . , n

Then, to maximize minimal quality is equivalent to maximize variable

q:

MAX z = q

n∑
i=1

xij = 1 j = 1, . . . , n

n∑
j=1

xij = 1 i = 1, . . . , n

n∑
i=1

cijxij ≥ q j = 1, . . . , n

xij binary

The results of assigning teachers to courses following the criteria of

maximizing total quality and maximizing minimal quality can be found

in Table 3.19 and Table 3.20, respectively.
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Code

In this case, it coud be preferable to develop a specific R function to

solve an instance of any size. This function loads the elements of

Rglpk_solve_LP to solve the first version of the problem (maximiza-

tion of total course quality).� �
Assignment01 <- function(c){

n <- dim(c)[1]

coef <- as.vector(t(c))

rhs <- rep(1, 2*n)

5

Amatrix <- matrix(0, 2*n, n*n)

for(i in 1:n){

for(j in 1:n){

10 Amatrix[i, n*(i-1)+j] <-1

}

}

for(i in 1:n){

15 for(j in 1:n){

Amatrix[n+i, n*(j-1)+i] <- 1

}

}

20 signs <- rep("==", 2*n)

var_type <- rep("B", 2*n)

library(Rglpk)

solution <- Rglpk_solve_LP(obj=coef , mat=Amatrix , dir=

signs , types=var_type , rhs=rhs , max=TRUE)

25 return(solution)

}� �
CHAPTER 3. MODELING LINEAR PROGRAMMING Sallan Lordan Fernandez | 78



The implementation for the second model (maximization of minimal

course quality) is the function:� �
Assignment02 <- function(c){

n <- dim(c)[1]

coef <- c(rep(0,n*n), 1)

rhs <- c(rep(1, 2*n), rep(0, n))

5 Amatrix <- matrix(0, 3*n, n*n + 1)

for(i in 1:n){

for(j in 1:n){

Amatrix[i, n*(i-1)+j] <-1

10 }

}

for(i in 1:n){

for(j in 1:n){

15 Amatrix[n+i, n*(j-1)+i] <- 1

}

}

for(i in 1:n){

20 for(j in 1:n){

Amatrix [2*n+i, n*(j-1)+i] <- c[j, i]

}

}

25 for(i in 1:n){

Amatrix [2*n+i, n*n + 1] <- -1

}

signs <- c(rep("==", 2*n), rep(" >=", n))

30

var_type <- c(rep("B", n*n), "C")

library(Rglpk)
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35 solutionPL <- Rglpk_solve_LP(obj=coef , mat=Amatrix , dir

=signs , types=var_type , rhs=rhs , max=TRUE)

return(solutionPL)

}� �
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To obtain the solutions of both models using the functions, we run the

code below. Solutions can be found in Table 3.19 and Table 3.20, re-

spectively.� �
#sample matrix has been generated at random

set.seed (1)

c <- matrix(sample (10:100 , 25), 100, 100)

5

#running of the first model

solAss01 <- Assignment01(c)

m.01 <- matrix(solAss01$solution [1:25] , 5, 5, byrow=TRUE)

10

#running of the second model

solAss02 <- Assignment02(c)

15 m.02 <- matrix(solAss$solution [1:25] , 5, 5, byrow=TRUE)� �
C1 C2 C3 C4 C5

T1 34 87 26 47 76

T2 43 90 24 63 97

T3 60 65 64 83 54

T4 89 62 39 37 18

T5 27 15 69 93 96

Table 3.19: Assignment to maximize total quality (in bold)

Both solutions give quite good assignments. The maximum total quality

gives a solution with average quality of 86, while the maximum minimal

quality criterion gives a solution with average quality equal to 81.4.

But the while the first criterion has values of quality from 97 to 64,
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C1 C2 C3 C4 C5

T1 34 87 26 47 76

T2 43 90 24 63 97

T3 60 65 64 83 54

T4 89 62 39 37 18

T5 27 15 69 93 96

Table 3.20: Assignment to maximize minimal quality (in bold)

in the second criterion quality ranges from 90 to 69, assuring more

homogeneity.
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3.9 Production of biofuel

A company that produces aircraft biofuel is planning a new product

called FC (Fuel-Corn). Table 3.21 shows the total quarterly demand in

tonnes (t) for the coming years as communicated by their customers.

Q1 Q2 Q3 Q4

FC demand (T) 1,200 1,100 1,300 1,000

Table 3.21: FC quarterly demand

In Table 3.22 can be found the costs per tonne of Fuel and Corn for

every two month period in the years to come.

B1 B2 B3 B4 B5 B6

Fuel (ke/t) 2 2.5 2 1 1.5 3

Corn (ke/t) 1.5 1 2 1 2 2.5

Table 3.22: Costs of Fuel and Corn in bimonthly periods

FC composition is obtained by mixing 35% of Fuel and 65% of Corn.

The life of Fuel is of four consecutive months and the life of Corn, six

(i.e., if we buy Fuel in early January, we cannot use it in early May).

We just buy Fuel and Corn at the beginning of each two-month period

and make the deliveries of FC at the beginning of each quarter. For

simplicity, we assume that one can buy, mix and sell the same day.

In addition, the plant manager has told us that in any two-month pe-

riod, we cannot buy more Fuel than triple of Corn.

In these conditions, you are required to:
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• develop a model to determine the amount of Fuel and Corn to

buy every two months to minimize the annual cost of production

of FC.

• The representative of Corn has offered a discount through which,

if in a two month period one buys 1,000 tons or more, they sell

all the tonnes purchased with a discount of 25%.

• Furthermore, the representative of Fuel has imposed that if in a

two-month period more than 400 tonnes of Fuel are bought, no

Fuel can be purchased in the following two months.

NOTE: The models of the second and third situation are independent,

and should be built starting from the first model.
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Models

The point of this model is that raw materials are bought every two

months, and final product dispatched every three months. After consid-

ering each case, in Table 3.23 we find the two month periods in which

Fuel and Corn can be bought to cover the demand of each quarter, and

in Table 3.24 the quarters where can be used Fuel and Corn bought on

each period.

Quarter j Fuel (set Fj) Corn (set Cj)

1 6, 1 5, 6, 1

2 1, 2 6, 1, 2

3 3, 4 2, 3, 4

4 4, 5 3, 4, 5

Table 3.23: Purchase periods of raw materials for each quarter

Period i Fuel (set F−1i ) Corn (set C−1i )

1 1, 2 1,2

2 2 2, 3

3 3 3, 4

4 3, 4 3, 4

5 4 4, 1

6 1 1, 2

Table 3.24: Purchase periods of raw materials for each quarter

Then, we define variables fij and cij , representing the amount of Fuel

and Corn, respectively, to buy on period i to cover the demand of quar-

ter j. The cost coefficients of the variables are the values qi and ri,

respectively, of Table 3.22.
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The model has three blocks of constraints:

• Two sets of constraints indicating the demand of raw materials

for each quarter. The demand of Fuel and Corn is the 35% and

65% of quarterly demand indicated in Table 3.21, respectively.

• A set of constraints to control that we cannot buy more Fuel than

triple of Corn for each period.

Then, the model can be formulated as:

MIN z =
∑
i∈Fj

∑
j∈1,...,4

qifij +
∑
i∈Cj

i
∑

j∈1,...,4
ricij

∑
i∈Fj

fij ≥ 0.35di j = 1, . . . , 4

∑
i∈Cj

cij ≥ 0.65di j = 1, . . . , 4

∑
j∈F−1

i

fij ≤ 3
∑

j∈C−1
i

cij i = 1, . . . , 6

fij , cij ≥ 0
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The second model posits a varying purchase price, but with a different

scheme as in problem 3.2. In this case, if we buy more than 1,000 tons

of Corn, the 25% discount is applied to all the tons of Corn purchased

in that two-month period. To model this situation, additional variables

should be defined:

• Variables ci: amount of Corn purchased on period i, if the total

amount is below 1,000 tonnes.

• Variables ei: amount of Corn purchased on period i, if the total

amount is above 1,000 tonnes.

• Binary variable bi, equal to one if more than 1,000 tonnes of Fuel

are bought on period i and zero otherwise.
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Then, the new model formulation is:

MIN z =
∑
i∈Fj

∑
j∈1,...,4

qifij +
∑

i∈1,...,6
rici +

∑
i∈1,...,6

0.75riei

ci + ei =
∑

j∈C−1
i

cij i = 1, . . . , 6

∑
i∈Fj

fij ≥ 0.35di j = 1, . . . , 4

∑
i∈Cj

cij ≥ 0.65di j = 1, . . . , 4

∑
j∈F−1

i

fij ≤ 3
∑

j∈C−1
i

cij i = 1, . . . , 6

di ≥ 1000bi

ci ≤M (1− bi)

di ≤Mbi

fij , cij , di, ei ≥ 0

bi binary
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Finally, to introduce the constraints relative to fuel (if more than 400

tons are bought in the two-month period, no Fuel can be purchased

in the following two-month period), we introduce binary variables ki

which equal one if more than 400 tons are bought in two month period

i and zero otherwise. Variables fj equaling the total amount of fuel

purchased on i are also introduced.

MIN z =
∑
i∈Fj

∑
j∈1,...,4

qifij +
∑
i∈Cj

i
∑

j∈1,...,4
ricij

fi =
∑

j∈F−1
i

fij i = 1, . . . , 6

∑
i∈Fj

fij ≥ 0.35di j = 1, . . . , 4

∑
i∈Cj

cij ≥ 0.65di j = 1, . . . , 4

∑
j∈F−1

i

fij ≤ 3
∑

j∈C−1
i

cij i = 1, . . . , 6

fi ≥ 400ki i = 1, . . . , 5

fi ≤M (1− ki−1) i = 2, . . . , 6

fi, fij , cij ≥ 0 ki binary
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Code

The first model in CPLEX format:� �
Minimize

2F11 + 2F12 + 2.5F22 + 2F33 + F43 + F44 + 1.5 F54 + 3F61

+ 1.5 C11 + 1.5C12 + C22 + C23 + 2C33 + 2C34 + C43 +

C44 + 2C54 + 2C51 + 2.5C61 + 2.5 C62

Subject To

fuel1: F61 + F11 >= 420

5 fuel2: F12 + F22 >= 385

fuel3: F33 + F43 >= 455

fuel4: F44 + F54 >= 350

corn1: C51 + C61 + C11 >= 780

10 corn2: C62 + C12 + C22 >= 715

corn3: C23 + C33 + C43 >= 845

corn4: C34 + C44 + C54 >= 650

prop1: F11 + F12 - 3C11 - 3C12 <= 0

15 prop2: F22 - 3C22 - 3C23 <= 0

prop3: F33 - 3C33 - 3C34 <= 0

prop4: F43 + F44 - 3C43 - 3C44 <= 0

prop5: F54 - 3C54 - 3C51 <= 0

prop6: F61 - 3C61 - 3C62 <= 0

20 End� �
The second model in CPLEX format (ei variables are defined as DI in

this implementation):� �
Minimize

2F11 + 2F12 + 2.5F22 + 2F33 + F43 + F44 + 1.5 F54 + 3F61

+ 1.5C1 + C2 + 2C3 + C4 + 2C5 + 2.5C6 + 1.125D1 +

0.75D2 + 1.5D3 + 0.75D4 + 1.5D5 + 1.875D6

CHAPTER 3. MODELING LINEAR PROGRAMMING Sallan Lordan Fernandez | 90



Subject To

vars1: C1 + D1 - C11 - C12 = 0

5 vars2: C2 + D2 - C22 - C23 = 0

vars3: C3 + D3 - C33 - C34 = 0

vars4: C4 + D4 - C43 - C44 = 0

vars5: C5 + D5 - C54 - C51 = 0

vars6: C6 + D6 - C61 - C62 = 0

10

fuel1: F61 + F11 >= 420

fuel2: F12 + F22 >= 385

fuel3: F33 + F43 >= 455

fuel4: F44 + F54 >= 350

15

corn1: C51 + C61 + C11 >= 780

corn2: C62 + C12 + C22 >= 715

corn3: C23 + C33 + C43 >= 845

corn4: C34 + C44 + C54 >= 650

20

prop1: F11 + F12 - 3C1 - 3D1 <= 0

prop2: F22 - 3C2 - 3D2 <= 0

prop3: F33 - 3C3 - 3D3 <= 0

prop4: F43 + F44 - 3C4 - 3D4 <= 0

25 prop5: F54 - 3C5 - 3D5 <= 0

prop6: F61 - 3C6 - 3D6 <= 0

des01: D1 - 1000B1 >= 0

des02: D2 - 1000B2 >= 0

30 des03: D3 - 1000B3 >= 0

des04: D4 - 1000B4 >= 0

des05: D5 - 1000B5 >= 0

des06: D6 - 1000B6 >= 0

35 Ces01: C1 + 1000B1 <= 1000

Ces02: C2 + 1000B2 <= 1000

Ces03: C3 + 1000B3 <= 1000
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Ces04: C4 + 1000B4 <= 1000

Ces05: C5 + 1000B5 <= 1000

40 Ces06: C6 + 1000B6 <= 1000

Des01: D1 - 10000B1 <= 0

Des02: D2 - 10000B2 <= 0

Des03: D3 - 10000B3 <= 0

45 Des04: D4 - 10000B4 <= 0

Des05: D5 - 10000B5 <= 0

Des06: D6 - 10000B6 <= 0

Binary

50 B1

B2

B3

B4

B5

55 B6

End� �
The CPLEX formulation of the third model is as follows. Here the ki

variables have been labeled as BF.� �
Minimize

2F11 + 2F12 + 2.5F22 + 2F33 + F43 + F44 + 1.5 F54 + 3F61

+ 1.5 C11 + 1.5C12 + C22 + C23 + 2C33 + 2C34 + C43 +

C44 + 2C54 + 2C51 + 2.5C61 + 2.5 C62

Subject To

5 Vars1: F1 - F11 - F12 = 0

Vars4: F4 - F43 - F44 = 0

fuel1: F61 + F11 >= 420

fuel2: F12 + F22 >= 385

10 fuel3: F33 + F43 >= 455
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fuel4: F44 + F54 >= 350

corn1: C51 + C61 + C11 >= 780

corn2: C62 + C12 + C22 >= 715

15 corn3: C23 + C33 + C43 >= 845

corn4: C34 + C44 + C54 >= 650

prop1: F11 + F12 - 3C11 - 3C12 <= 0

prop2: F22 - 3C22 - 3C23 <= 0

20 prop3: F33 - 3C33 - 3C34 <= 0

prop4: F43 + F44 - 3C43 - 3C44 <= 0

prop5: F54 - 3C54 - 3C51 <= 0

prop6: F61 - 3C61 - 3C62 <= 0

25 res01: F1 - 400BF1 >= 0

res02: F22 - 400BF2 >= 0

res03: F33 - 400BF3 >= 0

res04: F4 - 400BF4 >= 0

res05: F54 - 400BF5 >= 0

30 res06: F61 - 400BF6 >= 0

res13: F22 - 90000 BF1 <= 90000

res14: F33 - 90000 BF2 <= 90000

res15: F4 - 90000 BF3 <= 90000

35 res16: F54 - 90000 BF4 <= 90000

res17: F61 - 90000 BF5 <= 90000

Binary

BF1

40 BF2

BF3

BF4

BF5

BF6

45 End� �
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Numerical results

In Table 3.25 are the numerical results for the first and third models.

As in the first model Fuel is bought in periods 1 and 4, the third model

has the same numerical results as the first. Table 3.26 shows the results

of the second model. Note that in that second model more corn than

needed is bought to benefit from the discount, but the total costs are

lower than in the other two models.

Solution

F11 420

F12 385

F43 455

F44 350

C11 780

C22 715

C23 845

C44 650

obj 5,795

Table 3.25: Results for the first and third models (variables equal to zero omit-

ted). Variables in tonnes i obj. function in ke
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Solution

F11 420

F12 385

F43 455

F44 350

D1 1,000

D2 1,000

D4 1,000

C11 790

C12 210

C22 505

C23 495

C43 350

C44 650

B1 1

B2 1

B4 1

obj 5,040

Table 3.26: Results for the first and third models (variables equal to zero omitted)
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3.10 A finantial optimization problem

A university student has a grant to work as intern in the Operations

Research department of her university. She starts working in January,

and receives 3,500 e at the end of each month. She has enough money

to pay her bills this year, so she has decided to invest her money.

0 4,000 20,000

1 3.04 3.56 3.82

2 3.24 3.76 4.04

3 3.44 3.96 4.26

4 3.64 4.16 4.48

5 3.84 4.36 4.70

6 4.04 4.56 4.92

7 4.25 4.75 5.15

8 4.45 4.95 5.37

9 4.65 5.15 5.59

10 4.85 5.35 5.81

11 5.05 5.55 6.03

12 5.25 5.75 6.25

Table 3.27: Yearly interests rates for every category

She has gone to the campus office bank, and she has been told that she

can get interests from her money in the following conditions:

• She can contract a fixed deposit at the beginning of each month.

The yearly interest rates are dependent upon the term of the de-

posit, and are listed in Table 3.27. Monthly interest rates can be

obtained dividing the yearly rate by twelve.
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• She can retrieve her money at the end of December, irrespective

of the moment of time she has made the deposit. This means that,

for instance, if she deposits money at the beginning of month four,

she will have the money deposited during nine months and she

will receive the interest corresponding to that deposit as listed in

Table 3.27.

• As can be seen in Table 3.27, there are three interests depending

of the amount of the deposit. Interests apply to the total amount

of the diposit. For instance, if in month 2 are deposited 4,000

e, money will remain deposited for eleven months. So, she will

receive a monthly interest of 5.05/12%. But if the amount of

the deposit is between 4,000 and 20,000, then she will receive a

monthly interest of 5.55/12% on the total amount deposited.

She has found that the conditions are quite adequate for her, so she

has contracted the deposit. To start her savings plan, she counts with

3,500 e at the beginning of January. Given these conditions, you are

requested to find through linear programming the amount to deposit

each month to maximize the total interests earned at the end of month

12.
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Models

It seems obvious that a set of variables representing the amount to de-

posit each month for every category must be defined:

• pi: total amount deposited in the range of the first category (less

than 4,000) in month i

• qi: total amount deposited in the range of the second category

(more than 4,000) and less than 20,000) in month i

• ri: total amount deposited in the range of the third category

(more than 20,000) in month i

where i = 1, . . . , 12. Note that for each month, one one of the three

variables can be different from zero.

The cost coefficients kij will be obtained from Table 3.27. If kij is the

yearly interest offered for a deposit in the month i in category j we have

that cost coefficients are equal to:

• ki1(12 + 1− i)/12 = ki1(13− i)/12 for variables pi

• ki2(13− i)/12 for variables qi

• ki3(13− i)/12 for variables ri

so the objective function is:

MAX z =

12∑
i=1

13− i

12
(ki1pi + k13−i,2qi + k13−i,3ri)
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In a given month, the total amount to be deposited will be equal to

pi + qi + ri. Money can come from the same month, or for previous

months. So we need the variables:

• si money available, but not deposited at the end of month i

So the continuity constraints are:

si−1 + 3500 = pi + qi + ri + si

for i = 1, . . . , 12, with s0 = 0.

Finally, we must set the values of the variables to their corresponding

category. For doing so, we must define two binary variables for each

month:

• bi: equals one if the money deposited in month i belongs to the

second category, and zero otherwise

• ci: equals one if the money deposited in month i belongs to the

third category, and zero otherwise

If the money deposited belongs to the third category, both binary vari-

ables equal zero. As the interests of the third category are larger than

the ones of the second for all money deposited, bi and ci never will

equal one at the same time in the optimal solution.

Therefore, we must add the constraints:

qi ≤ 4000bi

ri ≥ 20000ci

pi ≤M (1− bi) qi ≤M (1− ci)
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Code

Here is the code that implements the model described above. Data of

interest rates is read from a .csv file, and loaded into the fin object.� �
library(Rglpk)

#defining the objective function

5 fin <- fin [ ,2:13]/12

for(i in 1:12) fin[,i] <- fin[,i]*i

int <- fin [ ,12:1]

f.obj <- c(t(int[1,]),t(int[2,]),t(int[3,]),rep (0,11))

10 l <- length(f.obj)

f.obj <- c(f.obj ,rep (0 ,12*2))

#defining types of variables

15 types <- c(rep("C",l),rep("B" ,12*2))

#defining constraints

mat1 <- matrix(0,nrow=12,ncol=length(f.obj))

20 for(i in 1:12){

mat1[i,c(i,12+i,24+i)] <- 1

if(i>1) mat1[i,l+i-1-11] <- -1

if(i<12) mat1[i,l+i-11] <- 1

}

25

f.rhs1 <- c(rep (3500 ,12))

f.dir1 <- rep ("==" ,12)

#binary variables constraints (greater of equal)

30 mat2 <- matrix(0,nrow =12*2 , ncol=length(f.obj))
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for(i in 1:(12*2)){

mat2[i,i+12] <- 1

if(i<=12) mat2[i,i+l] <- -4000

35 if(i>12) mat2[i,i+l] <- -20000

}

f.rhs2 <- c(rep (0 ,12*2))

f.dir2 <- rep (" >=" ,12*2)

40

#binary variables constraints (lesser or equal)

M=1000000

mat3 <- matrix(0,nrow =12*2 , ncol=length(f.obj))

45

for(i in 1:(12*2)){

mat3[i,c(12+i)] <- 1

mat3[i,l+i] <- -M

}

50

f.rhs3 <- c(rep (0 ,12*2))

f.dir3 <- rep (" <=" ,12*2)

#binding all constraints

55 f.con <- rbind(mat1 ,mat2 ,mat3)

f.rhs <- c(f.rhs1 ,f.rhs2 ,f.rhs3)

f.dir <- c(f.dir1 ,f.dir2 ,f.dir3)

#solving model with Rglpk

60 lp_fin <- Rglpk_solve_LP(f.obj , f.con , f.dir , f.rhs , max=

TRUE , types=types)

#----solution -----

#variables p
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65 lp_fin$solution [1:12]

#variables q

lp_fin$solution [13:24]

#variables r

lp_fin$solution [25:36]

70 #variables s

lp_fin$solution [37:47]

#variables b

lp_fin$solution [48:59]

#variables c

75 lp_fin$solution [60:71]

#value of objective function

lp_fin$optimum� �
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Numerical results

In Table 3.28 appears the result of the model. The total interests at the

end of the year are equal to 1,081.47 e.

Month pi qi ri si

1 2,500 0 0 1,000

2 0 4,000 0 500

3 0 4,000 0 0

4 2,500 0 0 1,000

5 0 4,000 0 500

6 0 4,000 0 0

7 2,500 0 0 1,000

8 0 4,000 0 500

9 0 4,000 0 0

10 3,000 0 0 500

11 0 4,000 0 0

12 3,500 0 0 –

Table 3.28: Financial plan optimizing total earnings (amounts in e)
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